Bài 20 trang 102 SBT toán 9 tập 2


Giải bài 20 trang 102 sách bài tập toán 9.Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB...

Đề bài

Cho tam giác đều \(ABC\) nội tiếp đường tròn \((O)\) và \(M\) là một điểm của cung nhỏ \(BC.\) Trên \(MA\) lấy điểm \(D\) sao cho \(MD = MB.\)

\(a)\) Hỏi tam giác MBD là tam giác gì\(?\)

\(b)\) So sánh hai tam giác \(BDA\) và \(BMC.\)

\(c)\) Chứng minh rằng \(MA = MB + MC.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

\(a)\) \(MB = MD \;\;(gt)\) \( \Rightarrow \) \(∆MBD\) cân tại \(M\)

\(\widehat {AMB} = \widehat {ACB}\) (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AB}\))

Mà \(\widehat {ACB} = {60^0}\)  (vì \(∆ABC\) đều)

\( \Rightarrow \widehat {AMB} = {60^0}\) hay \(\widehat {DMB} = {60^0}\)

Vậy \(∆MBD\) đều

\(b)\) \(∆MBD\) đều

\( \Rightarrow \widehat {DBC} + \widehat {CBM} = \widehat {DBM} = {60^0}\)           \( (1)\)

\(∆ABC\) đều \( \Rightarrow \widehat {ABD} + \widehat {DBC} = \widehat {ABC} = {60^0}\)     \( (2)\)

Từ \((1)\) và \((2)\) suy ra: \(\widehat {CBM} = \widehat {ABD}\)

Xét \(∆BDA\) và \(∆BMC:\)

\(BA = BC \;\;(gt)\)

\(\widehat {ABD} = \widehat {CBM}\) (chứng minh trên)

\(BD = BM\) (vì \(∆MBD\) đều)

Suy ra: \(∆BDA = ∆BMC\;\; (c.g.c)\)

\(c)\) \(∆BDA = ∆BMC\) (chứng minh trên)

\( \Rightarrow DA = MC\)

Ta có: \(MB = MD\;\; (gt)\)  mà \(AM = AD + DM\)

Suy ra: \(MA = MB + MC \;\;(đpcm)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 8 phiếu

Các bài liên quan: - Bài 3. Góc nội tiếp

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài