Bài 20 trang 102 SBT toán 9 tập 2


Giải bài 20 trang 102 sách bài tập toán 9.Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác đều \(ABC\) nội tiếp đường tròn \((O)\) và \(M\) là một điểm của cung nhỏ \(BC.\) Trên \(MA\) lấy điểm \(D\) sao cho \(MD = MB.\)

\(a)\) Hỏi tam giác MBD là tam giác gì\(?\)

\(b)\) So sánh hai tam giác \(BDA\) và \(BMC.\)

\(c)\) Chứng minh rằng \(MA = MB + MC.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, hai góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

\(a)\) \(MB = MD \;\;(gt)\) \( \Rightarrow \) \(∆MBD\) cân tại \(M\)

\(\widehat {AMB} = \widehat {ACB}\) (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AB}\))

Mà \(\widehat {ACB} = {60^0}\)  (vì \(∆ABC\) đều)

\( \Rightarrow \widehat {AMB} = {60^0}\) hay \(\widehat {DMB} = {60^0}\)

Vậy \(∆MBD\) đều

\(b)\) \(∆MBD\) đều

\( \Rightarrow \widehat {DBC} + \widehat {CBM} = \widehat {DBM} = {60^0}\)           \( (1)\)

\(∆ABC\) đều \( \Rightarrow \widehat {ABD} + \widehat {DBC} = \widehat {ABC} = {60^0}\)     \( (2)\)

Từ \((1)\) và \((2)\) suy ra: \(\widehat {CBM} = \widehat {ABD}\)

Xét \(∆BDA\) và \(∆BMC:\)

\(BA = BC \;\;(gt)\)

\(\widehat {ABD} = \widehat {CBM}\) (chứng minh trên)

\(BD = BM\) (vì \(∆MBD\) đều)

Suy ra: \(∆BDA = ∆BMC\;\; (c.g.c)\)

\(c)\) \(∆BDA = ∆BMC\) (chứng minh trên)

\( \Rightarrow DA = MC\)

Ta có: \(MB = MD\;\; (gt)\)  mà \(AM = AD + DM\)

Suy ra: \(MA = MB + MC \;\;(đpcm)\)

Loigiaihay.com


Bình chọn:
4.7 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí