Bài 18 trang 87 SBT toán 8 tập 2


Đề bài

Tam giác \(ABC\) có các đường phân giác \(AD, BE\) và \(CF\) (h15).

Chứng minh rằng:

\(\displaystyle {{DB} \over {DC}}.{{EC} \over {EA}}.{{FA} \over {FB}} = 1\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất đường phân giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

Lời giải chi tiết

Áp dụng tính chất đường phân giác vào \(\Delta ABC\)

Đường phân giác \(AD\) của \(\widehat {BAC}\) ta có:

\(\displaystyle {{DB} \over {DC}} = {{AB} \over {AC}}\)         (1)

Đường phân giác \(BE\) của \(\widehat {ABC}\) ta có:

\(\displaystyle{{EC} \over {EA}} = {{BC} \over {AB}}\)          (2)

Đường phân giác \(CF\) của \(\widehat {ACB}\) ta có:

\(\displaystyle {{FA} \over {FB}} = {{CA} \over {CB}}\)           (3)

Nhân từng vế (1), (2) và (3), ta được:

\(\displaystyle  {{DB} \over {DC}}.{{EC} \over {EA}}.{{FA} \over {FB}} = {{AB} \over {AC}}.{{BC} \over {AB}}.{{CA} \over {CB}} \)\(\,= 1\).

Loigiaihay.com


Bình chọn:
4.7 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.