Bài 158 trang 100 SBT Toán 8 tập 1


Giải bài 158 trang 100 sách bài tập toán 8. Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D...

Đề bài

Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.

a. Tứ giác AEDF là hình gì ? Vì sao ?

b. Các tứ giác ADBM, ADCN là hình gì ? Vì sao ?

c. Chứng minh rằng M đối xứng với N qua A

d. Tam giác vuông ABC có điều kiện gì thì tứ giác AEDF là hình vuông ?

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức :

- Tứ giác có ba góc vuông là hình chữ nhật.

- Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

- Tính chất về các cạnh và góc của hình thoi; hình vuông.

Lời giải chi tiết

a. Điểm M và điểm D đối xứng qua trục AB

⇒ AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM

⇒ \(\widehat {AED} = {90^0}\)

Điểm D và điểm N đối xứng nhau qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN

⇒ AC ⊥ DN \( \Rightarrow \widehat {AFD} = {90^0}\)

Mà \(\widehat {EAF} = {90^0}\) (gt)

Vậy tứ giác AEDF là hình chữ nhật (vì có ba góc vuông)

b. Tứ giác AEDF là hình chữ nhật

⇒ DE // AC; DF // AB

Trong ∆ ABC ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình tam giác)

Lại có DF// AB và DB=DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM : AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực của DM)

Suy ra: Tứ giác ADBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi ( vì có hai đường chéo vuông góc)

Xét tứ giác ADCN:

AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực của DN)

Suy ra: Tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo vuông góc)

c. Tứ giác ADBM là hình thoi

⇒ AM // DB và AM = AD (tính chất) 

Hay AM // BC và AM = AD (1)

Tứ giác ADCN là hình thoi

⇒ AN // DC và AD = AN (tính chất)

Hay AN // BC và AN = AD (2)

Từ (1) và (2) suy ra: AM trùng với AN hay M, A, N thẳng hàng

Và AM = AN nên A là trung điểm của MN

Vậy điểm M và điểm N đối xứng với nhau qua điểm A

d. Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = \(\displaystyle {1 \over 2}\)AB ; AF =\(\displaystyle {1 \over 2}\)AC

Nên AE = AF  AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 19 phiếu

Các bài liên quan: - Bài tập ôn chương 1 - Tứ giác

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài