Bài tập 4 trang 173 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập a) Chứng minh rằng nếu một tam giác đều có cạnh bằng a thì diện tích bằng

Đề bài

a) Chứng minh rằng nếu một tam giác đều có cạnh bằng a thì diện tích bằng \({{{a^3}\sqrt 3 } \over 4}\) .

b) Tính diện tích của lục giác đều có cạnh bằng a.

Lời giải chi tiết

 

a) Kẻ AH là đường cao của tam giác ABC

\(\Delta ABC\) đều \( \Rightarrow AH\) là đường trung tuyến

\( \Rightarrow H\) là trung điểm của BC \( \Rightarrow BH = {{BC} \over 2} = {a \over 2}\)

\(\Delta ABH\) vuông tại H có \(A{H^2} + B{H^2} = A{B^2}\) (định lí Pytago)

\( \Rightarrow A{H^2} + {{{a^2}} \over 4} = {a^2} \Rightarrow A{H^2} = {{3{a^2}} \over 4} \Rightarrow AH = {{a\sqrt 3 } \over 2}\)

\({S_{ABC}} = {1 \over 2}AH.BC = {1 \over 2}.{{a\sqrt 3 } \over 2}.a = {{{a^2}\sqrt 3 } \over 4}\)

b)

 

Gọi O là tâm của lục giác đều

Ta có : \({S_{ABCDEF}} = {S_{OAB}} + {S_{OBC}} + {S_{OCD}} + {S_{ODE}} + {S_{OEF}} + {S_{OAF}}\)

\({S_{OAB}} = {S_{OBC}} = {S_{OCD}} = {S_{ODE}} = {S_{OEF}} = {S_{OAF}}\)

(vì \(\Delta OAB = \Delta OBC = \Delta OCD = \Delta ODE = \Delta OEF = \Delta OAF\))

\( \Rightarrow {S_{ABCDEF}} = 6{S_{OAB}}\)

Mà \(\Delta OAB\) đều có cạnh bằng a, nên ta có \({S_{OAB}} = {{{a^2}\sqrt 3 } \over 4}\)

Do đó \({S_{ABCDEF}} = 6.{{{a^2}\sqrt 3 } \over 4} = {{3{a^2}\sqrt 3 } \over 2}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài