Bài tập 26 trang 92 Tài liệu dạy – học Toán 8 tập 2


Giải bài tập Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH. Tia phân giác của góc B cắt AC ở E, cắt AH ở F.

Đề bài

Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH. Tia phân giác của góc B cắt AC ở E, cắt AH ở F.

a) Chứng minh rằng AB.HF = AE.HB.

b) Chứng minh rằng AE = AF.

c) Chứng minh rằng AE2 = EC.FH.

d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác BHF.

Lời giải chi tiết

 

a) Xết ∆ABE và ∆BHF có:

\(\widehat {BAE} = \widehat {BHF}( = 90^\circ )\)

Và \(\widehat {ABE} = \widehat {FBH}\) (BE là tia phân giác của góc B)

Do đó \(\Delta ABE \sim \Delta HBF(g.g)\)

\( \Rightarrow {{AB} \over {HB}} = {{AE} \over {HF}} \Rightarrow AB.HF = AE.HB\)

b) Ta có \(\widehat {AEF} = \widehat {HFB}\) (vì \(\Delta ABE \sim \Delta HBF)\)

Và \(\widehat {HFB} = \widehat {AFE}\) (đối đỉnh)

\( \Rightarrow \widehat {AEF} = \widehat {AFE} \Rightarrow \Delta AEF\) cân tại A \( \Rightarrow AE = AF\)

c) Xét ∆ABH và ∆ABC có: góc B (chung) và \(\widehat {AHB} = \widehat {BAC}( = 90^\circ )\)

Do đó \(\Delta ABH \sim \Delta CBA(g.g) \)

\(\Rightarrow {{AB} \over {BC}} = {{BH} \over {AB}} \)

\(\Rightarrow {{BC} \over {AB}} = {{AB} \over {BH}}(1)\)

∆ABC có BE là đường phân giác (gt) nên \({{EC} \over {AE}} = {{BC} \over {AB}}(2)\)

∆ABH có BF là đường phân giác (gt) nên \({{AF} \over {FH}} = {{AB} \over {BH}}(3)\)

Từ (1), (2) và (3) suy ra: \({{EC} \over {AE}} = {{AF} \over {FH}} \Rightarrow AE.AF = EC.FH\)

Mà AF = AE (câu b) \( \Rightarrow AE.AE = EC.FH \Rightarrow A{E^2} = EC.FH\)
d) ∆ABC vuông tại A có \(B{C^2} = A{B^2} + A{C^2}\) (định lí Py-ta-go)

\( \Rightarrow B{C^2} = {9^2} + {12^2} = 225 \Rightarrow BC = 15(cm)\)

Ta có \(AH.BC = AB.AC( = 2{S_{ABC}}) \)

\(\Rightarrow AH = {{AB.AC} \over {BC}} = {{9.12} \over {15}} = 7,2(cm)\)

∆HAB vuông tại H \( \Rightarrow A{H^2} + B{H^2} = A{B^2}\) (định lý Py-ta-go)

Do đó \(B{H^2} = A{B^2} - A{H^2} = {9^2} - 7,{2^2} = 5,{4^2} \)

\(\Rightarrow BH = 5,4(cm)\)

∆ABH có BF là đường phân giác

\( \Rightarrow {{FH} \over {AF}} = {{BH} \over {AB}}\)

\(\Rightarrow {{FH} \over {BH}} = {{AF} \over {AB}} = {{FH + AF} \over {BH + AB}} = {{AH} \over {BH + AB}}\)

Nên \({{FH} \over {5,4}} = {{7,2} \over {5,4 + 9}} \)

\(\Rightarrow FH = 2,7(cm)\)

Do vậy \({S_{BHF}} = {1 \over 2}FH.BH = {1 \over 2}.2,7.5,4 = 7,29(c{m^2})\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài