Bài 4 trang 23 Tài liệu dạy – học Toán 9 tập 2


Tổng hợp đề thi giữa kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Hãy dùng phương pháp cộng đại số để giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}5x - 6y =  - 32\\3x + 6y = 48\end{array} \right.\)          

b) \(\left\{ \begin{array}{l}2x + 5y = 17\\6x - 5y =  - 9\end{array} \right.\)

c) \(\left\{ \begin{array}{l}2x - 3y = 61\\2x + y =  - 7\end{array} \right.\)

d) \(\left\{ \begin{array}{l}2x + 18y =  - 9\\4x + 18y =  - 27\end{array} \right.\)

e) \(\left\{ \begin{array}{l}4x + 5y = 15\\6x - 4y = 11\end{array} \right.\)

g) \(\left\{ \begin{array}{l}3x - 2y = 10\\2x + 3y =  - 2\end{array} \right.\)

h) \(\left\{ \begin{array}{l}y - \dfrac{x}{2} = 2\\\dfrac{3}{2}x + y = 42\end{array} \right.\)        

i) \(\left\{ \begin{array}{l}\dfrac{2}{3}x - y = 70\\\dfrac{1}{3}x - \dfrac{2}{3}y = 43\end{array} \right.\)

Phương pháp giải - Xem chi tiết

+) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của cùng một ẩn nào đó trong hai phương trình của hệ là bằng nhau hoặc đối nhau.

+) Áp dụng quy tắc cộng đại số để được một hệ phương trình mới, trong đó có một phương trình có hệ số của một trong hai ẩn bằng 0 (tức là phương tình một ẩn).

+) Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ đã cho.

Quảng cáo
decumar

Lời giải chi tiết

\(\begin{array}{l}a)\,\,\left\{ \begin{array}{l}5x - 6y =  - 32\\3x + 6y = 48\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}8x = 16\\5x - 6y =  - 32\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\5.2 - 6y =  - 32\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\6y = 42\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 7\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {2;7} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}b)\,\,\left\{ \begin{array}{l}2x + 5y = 17\\6x - 5y =  - 9\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}8x = 8\\2x + 5y = 17\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\2.1 + 5y = 17\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\5y = 15\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}c)\,\,\left\{ \begin{array}{l}2x - 3y = 61\\2x + y =  - 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4y =  - 68\\2x + y =  - 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 17\\2x - 17 =  - 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 17\\2x = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y =  - 17\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {5; - 17} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}d)\,\,\left\{ \begin{array}{l}2x + 18y =  - 9\\4x + 18y =  - 27\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}2x =  - 18\\2x + 18y =  - 9\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 9\\2.\left( { - 9} \right) + 18y =  - 9\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 9\\18y = 9\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 9\\y = \dfrac{1}{2}\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( { - 9;\dfrac{1}{2}} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}e)\,\,\left\{ \begin{array}{l}4x + 5y = 15\\6x - 4y = 11\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}12x + 15y = 45\\12x - 8y = 22\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}23y = 23\\4x + 5y = 15\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 1\\4x + 5 = 15\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 1\\4y = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{5}{2}\\y = 1\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {\dfrac{5}{2};1} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}g)\,\,\left\{ \begin{array}{l}3x - 2y = 10\\2x + 3y =  - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}6x - 4y = 20\\6x + 9y =  - 6\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}13y =  - 26\\3x - 2y = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 2\\3x - 2\left( { - 2} \right) = 10\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 2\\3x = 6\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y =  - 2\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {2; - 2} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}h)\,\,\left\{ \begin{array}{l}y - \dfrac{x}{2} = 2\\\dfrac{3}{2}x + y = 42\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2x = 40\\y - \dfrac{x}{2} = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 20\\y - 10 = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 20\\y = 12\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {20;12} \right)\) là nghiệm của hệ phương trình.

\(\begin{array}{l}i)\,\,\left\{ \begin{array}{l}\dfrac{2}{3}x - y = 70\\\dfrac{1}{3}x - \dfrac{2}{3}y = 43\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{2}{3}x - y = 70\\\dfrac{2}{3}x - \dfrac{4}{3}y = 86\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{3}y =  - 16\\\dfrac{2}{3}x - y = 70\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 48\\\dfrac{2}{3}x + 48 = 70\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 48\\\dfrac{2}{3}x = 22\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - 48\\x = 33\end{array} \right.\end{array}\)

Vậy \(\left( {x;y} \right) = \left( {33; - 48} \right)\) là nghiệm của hệ phương trình.

 Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com, cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.