Bài 3 trang 65 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \(({x^2} - 2x)(x - 1)(x - 2) =  - 2\)

b) \((x - 1)(x - 2)(x - 3)(x - 4) = 24\)

Phương pháp giải - Xem chi tiết

Rút gọn vế trái sau đó quy được phương trình về dạng phương trình bậc 4 ta đặt \({x^2} = t\left( {t \ge 0} \right)\) để giải phương trình bậc 2.

Lời giải chi tiết

a)

\(\begin{array}{l}\left( {{x^2} - 2x} \right)\left( {x - 1} \right)\left( {x - 2} \right) =  - 2\\ \Leftrightarrow \left( {{x^3} - 3{x^2} + 2x} \right)\left( {x - 2} \right) =  - 2\\ \Leftrightarrow {x^4} - 2{x^3} - 3{x^3} + 6{x^2} + 2{x^2} - 4x + 2 = 0\\ \Leftrightarrow {x^4} - 5{x^3} + 8{x^2} - 4x + 2 = 0\\ \Leftrightarrow {x^2} - 5x + 8 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}} = 0\end{array}\)

b)

\(\begin{array}{l}(x - 1)(x - 2)(x - 3)(x - 4) = 24\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 24\\ \Leftrightarrow \left( {{x^2} - 5x + 4} \right)\left( {{x^2} - 5x + 6} \right) = 24\end{array}\)

Đặt \({x^2} - 5x + 4 = t\) khi đó ta có:

\(t.\left( {t + 2} \right) = 24\)

\(\Leftrightarrow {t^2} + 2t - 24 = 0\,\,\left( 2 \right);\)

\(a = 1;b' = 1;c =  - 24;\)

\(\Delta ' = 1 + 24 = 25 > 0;\sqrt {\Delta '}  = 5\)

Khi đó phương trình (2) có 2 nghiệm phân biệt là: \({t_1} =  - 1 + 5 = 4;{t_2} =  - 1 - 5 =  - 6\)

+) TH1: t1 = 4 ta có: \({x^2} - 5x + 4 = 4 \)

\(\Leftrightarrow x\left( {x - 5} \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 5\end{array} \right.\)

+) TH2: t2 = - 6  ta có: \({x^2} - 5x + 4 =  - 6\)

\(\Leftrightarrow {x^2} - 5x + 10 = 0;\)

\(\,\,\Delta  = {\left( { - 5} \right)^2} - 4.10 =  - 15 < 0\) (phương trình vô nghiệm)

Vậy phương trình đã cho có 2 nghiệm phân biệt là: x1 = 0; x2 = 5.

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng