Bài 1 trang 65 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^4} - 10{x^2} + 9 = 0\)       

b) \(4{x^4} + 5{x^2} + 1 = 0\)

c) \(4{x^4} + 7{x^2} - 2 = 0\)       

d) \({x^4} - 13{x^2} + 36 = 0\)

Phương pháp giải - Xem chi tiết

Đặt \({x^2} = t\left( {t \ge 0} \right)\)thay vào phương trình ban đầu ta giải phương trình bậc hai ẩn t sau đó tìm x.

Lời giải chi tiết

a) \({x^4} - 10{x^2} + 9 = 0\) (1)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) phương trình (1) trở thành: \({t^2} - 10t + 9 = 0\,\,\,\left( 2 \right);\)

\(a = 1;b =  - 10;c = 9;\)

\(a + b + c = 1 - 10 + 9 = 0\)

Khi đó phương trình (2) có 2 nghiệm phân biệt là: \({t_1} = 1\left( {tm} \right);{t_2} = 9\left( {tm} \right)\)

+) Với t = 1 ta có: \({x^2} = 1 \Leftrightarrow x =  \pm 1\)

+) Với t = 9 ta có: \({x^2} = 9 \Leftrightarrow x =  \pm 3\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 3; - 1;1;3} \right\}\)

b) \(4{x^4} + 5{x^2} + 1 = 0\)(3)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (3) trở thành: \(4{t^2} + 5t + 1 = 0\,\,\,\left( 4 \right);\)

\(a = 4;b = 5;c = 1;\)

\(a - b + c = 4 - 5 + 1 = 0\)

Khi đó phương trình (4) có 2 nghiệm phân biệt là: \({t_1} =  - 1\left( {ktm} \right);{t_2} =  - \dfrac{1}{4}\left( {ktm} \right)\)

Vậy phương trình đã cho vô nghiệm.

c) \(4{x^4} + 7{x^2} - 2 = 0\)  (5)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (5) trở thành: \(4{t^2} + 7t - 2 = 0\,\,\,\left( 6 \right);\)

\(a = 4;b = 7;c =  - 2;\)

\(\Delta  = {7^2} + 4.4.2 = 81 > 0;\sqrt \Delta   = 9\)

Khi đó phương trình (6) có 2 nghiệm phân biệt là:

\({t_1} = \dfrac{{ - 7 + 9}}{8} = \dfrac{1}{4}\left( {tm} \right);\)

\({t_2} = \dfrac{{ - 7 - 9}}{8} =  - 2\left( {ktm} \right)\)

 Với \(t = \dfrac{1}{4}\) ta có: \({x^2} = \dfrac{1}{4} \Leftrightarrow x =  \pm \dfrac{1}{2}\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - \dfrac{1}{2};\dfrac{1}{2}} \right\}\)

d) \({x^4} - 13{x^2} + 36 = 0\)(7)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (7) trở thành: \({t^2} - 13t + 36 = 0\,\,\,\left( 8 \right);\)

\(a = 1;b =  - 13;c = 36;\)

\(\Delta  = {13^2} - 4.1.36 = 25 > 0;\sqrt \Delta   = 5\)

Khi đó phương trình (8) có 2 nghiệm phân biệt là:

\({t_1} = \dfrac{{13 + 5}}{2} = 9\left( {tm} \right);\)

\({t_2} = \dfrac{{13 - 5}}{2} = 4\left( {tm} \right)\)

 Với \(t = 9\)  ta có: \({x^2} = 9 \Leftrightarrow x =  \pm 3\)

Với \(t = 4\)  ta có: \({x^2} = 4 \Leftrightarrow x =  \pm 2\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 3; - 2;2;3} \right\}\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng