Bài 1 trang 65 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^4} - 10{x^2} + 9 = 0\)       

b) \(4{x^4} + 5{x^2} + 1 = 0\)

c) \(4{x^4} + 7{x^2} - 2 = 0\)       

d) \({x^4} - 13{x^2} + 36 = 0\)

Phương pháp giải - Xem chi tiết

Đặt \({x^2} = t\left( {t \ge 0} \right)\)thay vào phương trình ban đầu ta giải phương trình bậc hai ẩn t sau đó tìm x.

Lời giải chi tiết

a) \({x^4} - 10{x^2} + 9 = 0\) (1)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) phương trình (1) trở thành: \({t^2} - 10t + 9 = 0\,\,\,\left( 2 \right);\)

\(a = 1;b =  - 10;c = 9;\)

\(a + b + c = 1 - 10 + 9 = 0\)

Khi đó phương trình (2) có 2 nghiệm phân biệt là: \({t_1} = 1\left( {tm} \right);{t_2} = 9\left( {tm} \right)\)

+) Với t = 1 ta có: \({x^2} = 1 \Leftrightarrow x =  \pm 1\)

+) Với t = 9 ta có: \({x^2} = 9 \Leftrightarrow x =  \pm 3\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 3; - 1;1;3} \right\}\)

b) \(4{x^4} + 5{x^2} + 1 = 0\)(3)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (3) trở thành: \(4{t^2} + 5t + 1 = 0\,\,\,\left( 4 \right);\)

\(a = 4;b = 5;c = 1;\)

\(a - b + c = 4 - 5 + 1 = 0\)

Khi đó phương trình (4) có 2 nghiệm phân biệt là: \({t_1} =  - 1\left( {ktm} \right);{t_2} =  - \dfrac{1}{4}\left( {ktm} \right)\)

Vậy phương trình đã cho vô nghiệm.

c) \(4{x^4} + 7{x^2} - 2 = 0\)  (5)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (5) trở thành: \(4{t^2} + 7t - 2 = 0\,\,\,\left( 6 \right);\)

\(a = 4;b = 7;c =  - 2;\)

\(\Delta  = {7^2} + 4.4.2 = 81 > 0;\sqrt \Delta   = 9\)

Khi đó phương trình (6) có 2 nghiệm phân biệt là:

\({t_1} = \dfrac{{ - 7 + 9}}{8} = \dfrac{1}{4}\left( {tm} \right);\)

\({t_2} = \dfrac{{ - 7 - 9}}{8} =  - 2\left( {ktm} \right)\)

 Với \(t = \dfrac{1}{4}\) ta có: \({x^2} = \dfrac{1}{4} \Leftrightarrow x =  \pm \dfrac{1}{2}\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - \dfrac{1}{2};\dfrac{1}{2}} \right\}\)

d) \({x^4} - 13{x^2} + 36 = 0\)(7)

Đặt \({x^2} = t\left( {t \ge 0} \right)\)phương trình (7) trở thành: \({t^2} - 13t + 36 = 0\,\,\,\left( 8 \right);\)

\(a = 1;b =  - 13;c = 36;\)

\(\Delta  = {13^2} - 4.1.36 = 25 > 0;\sqrt \Delta   = 5\)

Khi đó phương trình (8) có 2 nghiệm phân biệt là:

\({t_1} = \dfrac{{13 + 5}}{2} = 9\left( {tm} \right);\)

\({t_2} = \dfrac{{13 - 5}}{2} = 4\left( {tm} \right)\)

 Với \(t = 9\)  ta có: \({x^2} = 9 \Leftrightarrow x =  \pm 3\)

Với \(t = 4\)  ta có: \({x^2} = 4 \Leftrightarrow x =  \pm 2\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 3; - 2;2;3} \right\}\)

Loigiaihay.com

Các bài liên quan: - Bài tập - Chủ đề 7: Bài toán bậc hai

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu