Bài 8 trang 6 SBT toán 8 tập 1


Giải bài 8 trang 6 sách bài tập toán 8. Chứng minh:...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh:

LG a

\(\) \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) = {x^3} - 1\)

Phương pháp giải:

Sử dụng nhân đa thức với đa thức: Muốn nhân đa thức với đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau:

Với \(A, B, C, D\) là các đơn thức: \((A+B)(C+D)\)\(=AC+AD+BC+BD\) 

Lời giải chi tiết:

\(\) Biến đổi vế trái: \(\left( {x - 1} \right)\left( {{x^2} + x + 1} \right) \)

\( = x.{x^2} + x.x + x.1 - 1.{x^2} - 1.x - 1.1\)

\(= {x^3} + {x^2} + x - {x^2} - x - 1 = {x^3} - 1\)

Vế trái bằng vế phải vậy đẳng thức được chứng minh

LG b

\(\) \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) \)\(= {x^4} - {y^4}\) 

Phương pháp giải:

Sử dụng nhân đa thức với đa thức: Muốn nhân đa thức với đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích lại với nhau:

Với \(A, B, C, D\) là các đơn thức: \((A+B)(C+D)\)\(=AC+AD+BC+BD\) 

Lời giải chi tiết:

\(\) Biến đổi vế trái: \(\left( {{x^3} + {x^2}y + x{y^2} + {y^3}} \right)\left( {x - y} \right) \)

\( = {x^3}.x + {x^2}y.x + x{y^2}.x + {y^3}.x + {x^3}.\left( { - y} \right)\)\( + {x^2}y.\left( { - y} \right) + x{y^2}.\left( { - y} \right) + {y^3}.\left( { - y} \right)\)

\(= {x^4} + {x^3}y + {x^2}{y^2} + x{y^3} - {x^3}y \)\(-{x^2}{y^2} - x{y^3} - {y^4} \)\(= {x^4} - {y^4}\)

Vế trái bằng vế phải vậy đẳng thức được chứng minh.

Loigiaihay.com


Bình chọn:
4.7 trên 31 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.