Bài 53 trang 97 SBT toán 8 tập 2


Giải bài 53 trang 97 sách bài tập toán 8. Cho hình chữ nhật ABCD có AB = a = 12 cm, BC = b = 9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD (h.38) ...

Đề bài

Cho hình chữ nhật \(ABCD\) có \(AB = a = 12 cm,\) \(BC = b = 9cm.\) Gọi \(H\) là chân đường vuông góc kẻ từ \(A\) xuống \(BD\) (h.38)

a) Chứng minh \(∆ AHB\) đồng dạng \(∆ BCD;\)

b) Tính độ dài đoạn thẳng \(AH\);

c) Tính diện tích tam giác \(AHB.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Định lí Pytago: Bình phương của cạnh huyền bằng tổng các bình phương của các cạnh góc vuông. 

Lời giải chi tiết

a) Vì \(AB // CD\) (vì \(ABCD\) là hình chữ nhật) nên \(\widehat {ABH} = \widehat {BDC}\) (cặp góc so le trong).

Xét \( ∆ AHB\) và \(∆ BCD\) có:

+) \(\widehat {AHB} = \widehat {BCD} = 90^\circ \)

+) \(\widehat {ABH} = \widehat {BDC}\) (chứng minh trên)

\( \Rightarrow ∆ AHB\) đồng dạng \(∆ BCD\) (g.g)

b) Vì \(∆ AHB\) đồng dạng \(∆ BCD\) suy ra \(\displaystyle{{AH} \over {BC}} = {{AB} \over {BD}}\)

\( \Rightarrow \displaystyle AH = {{AB.BC} \over {BD}}\)

Áp dụng định lí Py-ta-go vào tam giác vuông \(BCD\), ta có:

\( B{D^2} = B{C^2} + C{D^2}  ={9^2}+{12^2}  \)\(\,= 225  \)

\( \Rightarrow BD = 15\, (cm)\).

Vậy \(\displaystyle  AH = {{12.9} \over {15}} = 7,2\; (cm).\)

c) Vì \(∆ AHB\) đồng dạng \(∆ BCD\) theo tỉ số \(k = \displaystyle  {{AH} \over {BC}} = {{7,2} \over 9} = 0,8\)

Ta có \(\displaystyle  {{{S_{AHB}}} \over {{S_{BCD}}}} = {k^2} = {\left( {0,8} \right)^2} = 0,64\)

\(\Rightarrow {S_{AHB}} = 0,64.{S_{BCD}}\)

\(\displaystyle  {S_{BCD}} = {1 \over 2}BC.CD = {1 \over 2}.12.9 \)\(\,= 54(c{m^2})\)

\(\displaystyle  {S_{AHB}} = 0,64.{S_{BCD}} = 0,64.54 \)\(\,= 34,56(c{m^2})\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.5 trên 12 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài