
Đề bài
Tính: \(\displaystyle {\left( { - {1 \over 2}} \right)^0};{\left( {3{1 \over 2}} \right)^2};{\left( {2,5} \right)^3};{\left( { - 1{1 \over 4}} \right)^4}\)
Phương pháp giải - Xem chi tiết
Lũy thừa bậc \(n\) (\( n\) là số tự nhiên lớn hơn \(1\)) của một số hữu tỉ \(x\) là tích của \(n\) thừa số bằng \(x\).
\({x^n} = \underbrace {x \ldots x}_{n\;thừa \;số}\) (\( x ∈\mathbb Q, n ∈\mathbb N, n> 1\))
Nếu \(x = \dfrac{a}{b}\) thì \({x^n} = {\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\)
Quy ước:
\(\eqalign{
& {a^o} = 1\,\,\left( {a \in {\mathbb N^*}} \right) \cr
& {x^o} = 1\,\,\left( {x \in\mathbb Q,\,\,x \ne 0} \right) \cr} \)
Lời giải chi tiết
\(\displaystyle {\left( { - {1 \over 2}} \right)^0} = 1;\)
\(\displaystyle {\left( {3{1 \over 2}} \right)^2} = {\left( {{7 \over 2}} \right)^2} = {{49} \over 4} = 12{1 \over 4}\) ;
\(\displaystyle {\left( {2,5} \right)^3} = 15,625;\)
\(\displaystyle {\left( { - 1{1 \over 4}} \right)^4} = \left( {{{ - 5} \over 4}} \right)^4 = {{625} \over {256}} = 2{{113} \over {256}}\).
Loigiaihay.com
Các bài liên quan: - Bài 5. Luỹ thừa của một số hữu tỉ