Bài 34 trang 56 SBT toán 9 tập 2


Giải bài 34 trang 56 sách bài tập toán 9. Với giá trị nào của m thì phương trình có nghiệm kép: a) 5.x^2 + 2mx - 2m + 15 = 0

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Với giá trị nào của \(m\) thì phương trình có nghiệm kép:

LG a

\(5{x^2} + 2mx - 2m + 15 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có nghiệm kép khi và chỉ khi \(a \ne 0\) và \(\Delta ' = b{'^2} - ac=0\).

Lời giải chi tiết:

Phương trình \(5{x^2} + 2mx - 2m + 15 = 0\) có nghiệm kép khi và chỉ khi \(\Delta ' = 0\)

\(\Delta ' = {m^2} - 5\left( { - 2m + 15} \right) \)\(\,= {m^2} + 10m - 75 \)

\( \Delta ' = 0 \Leftrightarrow {m^2} + 10m - 75 = 0 \)

Giải phương trình: \({m^2} + 10m - 75 = 0 \)

Ta có: \(\Delta '_m = {5^2} - 1.\left( { - 75} \right) = 25 + 75 \)\(\,= 100 > 0 \)

\( \sqrt {\Delta '_m} = \sqrt {100} = 10 \) 

\(\displaystyle {m_1} = {{ - 5 + 10} \over 1} = 5 \)

\( \displaystyle {m_2} = {{ - 5 - 10} \over 1} = - 15  \)

Vậy \(m = 5\) hoặc \(m = -15\) thì phương trình đã cho có nghiệm kép.

LG b

\(m{x^2} - 4\left( {m - 1} \right)x - 8 = 0\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có nghiệm kép khi và chỉ khi \(a \ne 0\) và \(\Delta ' = b{'^2} - ac=0\).

Lời giải chi tiết:

Phương trình \(m{x^2} - 4\left( {m - 1} \right)x - 8 = 0\) có nghiệm kép khi và chỉ khi \(m \ne 0\) và \(\Delta ' = 0\)

\(\eqalign{
& \Delta ' = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - m.\left( { - 8} \right) \cr 
& = 4\left( {{m^2} - 2m + 1} \right) + 8m \cr 
& = 4{m^2} - 8m + 4 + 8m \cr 
& = 4{m^2} + 4 \cr 
& \Delta ' = 0 \Leftrightarrow 4{m^2} + 4 = 0 \cr} \)

Ta có \(4{m^2} \ge 0 \Rightarrow 4{m^2} + 4 \ge 4>0\) với mọi \(m\)

Nên phương trình \(4{m^2} + 4 = 0\) vô nghiệm.

Vậy không có giá trị nào của \(m\) để phương trình có nghiệm kép.

Loigiaihay.com


Bình chọn:
4.5 trên 6 phiếu
  • Bài 5.1, 5.2, 5.3 phần bài tập bổ sung trang 56 SBT toán 9 tập 2

    Giải bài 5.1, 5.2, 5.3 phần bài tập bổ sung trang 56 sách bài tập toán 9. Giả sử x1, x2 là hai nghiệm của phương trình bậc hai a.x^2 + bx + c = 0

  • Bài 33 trang 56 SBT toán 9 tập 2

    Giải bài 33 trang 56 sách bài tập toán 9. Với giá trị nào của m thì phương trình có hai nghiệm phân biệt.

  • Bài 32 trang 56 SBT toán 9 tập 2

    Giải bài 32 trang 56 sách bài tập toán 9. Với giá trị nào của m thì: a) Phương trình 2.x^2 - m^2.x + 18m = 0 có một nghiệm x = -3.

  • Bài 31 trang 56 SBT toán 9 tập 2

    Giải bài 31 trang 56 sách bài tập toán 9. Với giá trị nào của x thì giá trị của hai hàm số bằng nhau. a) y = 1/3.x^2 và y = 2x - 3

  • Bài 30 trang 56 SBT toán 9 tập 2

    Giải bài 30 trang 56 sách bài tập toán 9. Tính gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai): a) 16.x^2 - 8x + 1 = 0

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí