Bài 31 trang 56 SBT toán 9 tập 2


Giải bài 31 trang 56 sách bài tập toán 9. Với giá trị nào của x thì giá trị của hai hàm số bằng nhau. a) y = 1/3.x^2 và y = 2x - 3

Lựa chọn câu để xem lời giải nhanh hơn

Với giá trị nào của \(x\) thì giá trị của hai hàm số bằng nhau:

LG a

\(\displaystyle y = {1 \over 3}{x^2}\) và \(y = 2x - 3\)

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)

+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).

+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(\displaystyle {1 \over 3}{x^2} = 2x - 3 \)

\(\Leftrightarrow {x^2} =6x - 9\)

\(\Leftrightarrow {x^2} - 6x + 9 = 0\)

\(\Delta ' = {\left( { - 3} \right)^2} - 1.9 = 9 - 9 = 0\)

Phương trình có nghiệm kép: \({x_1} = {x_2}=\dfrac{-b'}{a} = 3\)

Vậy \(x = 3\) thì hàm số \(\displaystyle y = {1 \over 3}{x^2}\) và hàm số \(y = 2x - 3\) có giá trị bằng nhau.

LG b

\(\displaystyle y =  - {1 \over 2}{x^2}\) và \(y = x - 8\)?

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:

\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)

+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).

+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.

Lời giải chi tiết:

\(\displaystyle  - {1 \over 2}{x^2} = x - 8\)

\(\Leftrightarrow -{x^2} =2x - 16 \)

\(\Leftrightarrow {x^2} + 2x - 16 = 0\)

\( \Delta ' = {1^2} - 1.\left( { - 16} \right) = 1 + 16 \)\(\,= 17 > 0\)

\( \sqrt {\Delta '} = \sqrt {17}\)

Phương trình có hai nghiệm phân biệt:

\( \displaystyle {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\(\displaystyle = {{ - 1 + \sqrt {17} } \over 1} = - 1 + \sqrt {17} \)

\(\displaystyle {x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\(\displaystyle= {{ - 1 - \sqrt {17} } \over 1} = - 1 - \sqrt {17} \)

Vậy \(x = \sqrt {17}  - 1\) hoặc \(x =  - \left( {1 + \sqrt {17} } \right)\) thì giá trị của hai hàm số \(\displaystyle y =  - {1 \over 2}{x^2}\) và \(y = x - 8\) bằng nhau.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài