Bài 31 trang 161 SBT toán 9 tập 1


Giải bài 31 trang 161 sách bài tập toán 9. Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho đường tròn \((O),\) các bán kính \(OA\) và \(OB.\) Trên cung nhỏ \(AB\) lấy các điểm \(M\) và \(N\) sao cho \(AM = BN.\) Gọi \(C\) là giao điểm của các đường thẳng \(AM\) và \(BN.\) Chứng minh rằng:

\(a)\) \(OC\) là tia phân giác của góc \(AOB.\)

\(b)\) \(OC\) vuông góc với \(AB.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm.

+) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy vừa là đường cao, đường phân giác.

Lời giải chi tiết

\(a)\) Kẻ \(OH ⊥ AM, OK ⊥ BN\)

Ta có: \(AM = BN \;\;(gt)\)

Suy ra: \( OH = OK\) (hai dây bằng nhau cách đều tâm)

Xét hai tam giác \(OCH\) và \(OCK,\) ta có:

\(\widehat {OHC} = \widehat {OKC} = 90^\circ \)

         \(OC\) chung

         \(OH = OK\) (chứng minh trên)

Suy ra:  \(∆OCH = ∆OCK\) (cạnh huyền, cạnh góc vuông)

\(\widehat {{O_1}} = \widehat {{O_2}}\) (1)

Xét hai tam giác \(OAH\) và \(OBK,\) ta có:

\(\widehat {OHA} = \widehat {OKB} = 90^\circ \)

         \( OA = OB\) (cùng bằng bán kính)

          \(OH = OK\) ( chứng minh trên)

Suy ra: \(∆OAH = ∆OBK\) (cạnh huyền, cạnh góc vuông)

\(\widehat {{O_3}} = \widehat {{O_4}}\) (2)

Từ (1) và (2) suy ra:  \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\) hay \(\widehat {AOC} = \widehat {BOC}\)

Vậy \(OC\) là tia phân giác của \(\widehat {AOB}\)

\(b)\) Tam giác \(OAB\) cân tại \(O\) (do \(OA=OB)\) có \(OC\) là tia phân giác nên \(OC\) đồng thời cũng là đường cao ( tính chất tam giác cân).

Suy ra: \(OC ⊥ AB.\)

Chú ý: TH hình vẽ dưới đây các em vẫn làm như trên:

Loigiaihay.com


Bình chọn:
4 trên 7 phiếu
  • Bài 32* trang 161 SBT toán 9 tập 1

    Giải bài 32* trang 161 sách bài tập toán 9. Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm...

  • Bài 33* trang 161 SBT toán 9 tập 1

    Giải bài 33* trang 161 sách bài tập toán 9. Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.

  • Bài 34* trang 161 SBT toán 9 tập 1

    Giải bài 34* trang 161 sách bài tập toán 9. Cho đường tròn (O) và hai điểm A, B nằm bên trong đường tròn và không cùng thuộc một đường kính. Dựng hai dây song song và bằng nhau sao cho điểm A nằm trên một dây, điểm B nằm trên dây còn lại.

  • Bài 3.1 phần bài tập bổ sung trang 161 SBT toán lớp 9 tập 1

    Giải bài 3.1 phần bài tập bổ sung trang 161 sách bài tập toán lớp 9. Cho đường tròn (O) đường kính 6cm, dây AB bằng 2cm. Khoảng cách từ O đến AB bằng:...

  • Bài 3.2 phần bài tập bổ sung trang 161 SBT toán 9 tập 1

    Giải bài 3.2 phần bài tập bổ sung trang 161 sách bài tập toán 9. Cho đường tròn (O), điểm I nằm bên trong đường tròn ( I khác O). Dựng dây AB đi qua I và có độ dài ngắn nhất.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí