Bài 28 trang 160 SBT toán 9 tập 1


Giải bài 28 trang 160 sách bài tập toán 9. Tam giác ABC nội tiếp đường tròn (O) có...

Đề bài

Tam giác \(ABC\) nội tiếp đường tròn \((O)\) có \(\widehat A > \widehat B > \widehat C.\) Gọi \(OH, OI, OK\) theo thứ tự là khoảng cách từ \(O\) đến \(BC,\)\( AC,\)\( AB.\) So sánh các độ dài \(OH, OI, OK.\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong một tam giác, cạnh nào đối diện với góc lớn hơn thì cạnh đó lớn hơn.

+) Trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Lời giải chi tiết

Tam giác \(ABC\) có \(\widehat A > \widehat B > \widehat C\) nên suy ra:

\(BC > AC > AB\) (cạnh đối diện góc lớn hơn thì lớn hơn)

Ta có \(AB,\) \(BC,\) \(AC\) lần lượt là các dây cung của đường tròn \((O)\)

Mà \(BC > AC > AB\) nên suy ra:

\(OH < OI < OK\) ( dây lớn hơn thì gần tâm hơn).

Loigiaihay.com


Bình chọn:
4.7 trên 15 phiếu
  • Bài 29 trang 161 SBT toán 9 tập 1

    Giải bài 29 trang 161 sách bài tập toán 9. Cho đường tròn (O), hai dây AB, CD bằng nhau và cắt nhau tại điểm I nằm bên trong đường tròn. Chứng minh rằng:...

  • Bài 30 trang 161 SBT toán 9 tập 1

    Giải bài 30 trang 161 sách bài tập toán 9. Cho đường tròn tâm O bán kính 25cm. Hai dây AB, CD song song với nhau và có độ dài theo thứ tự bằng 40cm, 48cm. Tính khoảng cách giữa hai dây ấy.

  • Bài 31 trang 161 SBT toán 9 tập 1

    Giải bài 31 trang 161 sách bài tập toán 9. Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:...

  • Bài 32* trang 161 SBT toán 9 tập 1

    Giải bài 32* trang 161 sách bài tập toán 9. Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm...

  • Bài 33* trang 161 SBT toán 9 tập 1

    Giải bài 33* trang 161 sách bài tập toán 9. Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí