

Bài 25 trang 160 SBT toán 9 tập 1>
Giải bài 25 trang 160 sách bài tâp toán 9. Cho hình 75, trong đó hai dây CD, EF bằng nhau và vuông góc với nhau tại I, IC = 2cm, ID = 14cm. Tính khoảng cách từ O đến mỗi dây.
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hình \(75,\) trong đó hai dây \(CD, EF\) bằng nhau và vuông góc với nhau tại \(I,\) \(IC = 2cm,\) \(ID = 14cm.\) Tính khoảng cách từ \(O\) đến mỗi dây.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức: Trong một đường tròn:
+) Hai dây bằng nhau thì cách đều tâm.
+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Lời giải chi tiết
Kẻ \(OH ⊥ CD,\) \(OK ⊥EF\)
Vì tứ giác \(OKIH\) có ba góc vuông nên nó là hình chữ nhật.
Ta có: \(CD = EF\;\; (gt)\)
Suy ra: \(OH = OK\) (hai dây bằng nhau cách đều tâm)
Suy ra tứ giác \(OKIH\) là hình vuông.
Ta có:\(CD = CI + ID = 2 + 14 =16\; (cm)\)
Xét (O) có \(OH ⊥ CD\) mà OH là 1 phần đường kính và CD là dây cung nên \(HC = HD = \displaystyle {{CD} \over 2} = 8\) \((cm)\) (quan hệ giữa đường kính và dây cung)
Suy ra \(IH = HC – CI = 8 – 2 = 6\; (cm)\)
Do đó \(OH = OK =IH= 6\; (cm)\) (do \(OKIH\) là hình vuông).
Vậy khoảng cách từ \(O\) đến mỗi dây là 6cm.
Loigiaihay.com


- Bài 26 trang 160 SBT toán 9 tập 1
- Bài 27 trang 160 SBT toán 9 tập 1
- Bài 28 trang 160 SBT toán 9 tập 1
- Bài 29 trang 161 SBT toán 9 tập 1
- Bài 30 trang 161 SBT toán 9 tập 1
>> Xem thêm