Bài 29 trang 160 SBT toán 8 tập 1>
Giải bài 29 trang 160 sách bài tập toán 8. Hai cạnh của một tam giác có độ dài là 5cm và 6cm. Hỏi diện tích của tam giác đó có thể lấy giá trị nào trong các giá trị sau:
Đề bài
Hai cạnh của một tam giác có độ dài là \(5 \,cm\) và \(6\,cm.\) Hỏi diện tích của tam giác đó có thể lấy giá trị nào trong các giá trị sau:
a) \(10\) \(c{m^2}\)
b) \(15\) \(c{m^2}\)
c) \(20\) \(c{m^2}\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính diện tích tam giác: \(S=\dfrac{1}{2}ah\)
Tính chất của đường vuông góc và đường xiên.
Lời giải chi tiết
Giả sử hai cạnh của tam giác là \(5\,cm\) và \(6\,cm.\) Diện tích của tam giác tính theo hai cạnh khác nhau là:
\({S} =\dfrac{1}{2}.5.h\) hoặc \({S} = \dfrac{1}{2}.6.k\)
(với \(h\) và \(k\) là đường cao ứng với cạnh đáy là \(5\) và \(6\) của hai tam giác.)
Theo tính chất của đường vuông góc và đường xiên thì ta có \(h ≤ 6\) và \(k ≤ 5\)
Suy ra diện tích của tam giác là: \(S\le \dfrac{1}{2}.5.6\) hay \(S ≤ 15\)
Vậy diện tích của tam giác có thể bằng \(10\) \(c{m^2}\) hoặc \(15cm^2\) nhưng không thể bằng \(20 cm^2.\)
Loigiaihay.com
- Bài 30 trang 160 SBT toán 8 tập 1
- Bài 31 trang 160 SBT toán 8 tập 1
- Bài 3.1 phần bài tập bổ sung trang 160 SBT toán 8 tập 1
- Bài 3.2 phần bài tập bổ sung trang 161 SBT toán 8 tập 1
- Bài 3.3 phần bài tập bổ sung trang 161 SBT toán 8 tập 1
>> Xem thêm