Bài 20 trang 29 SBT toán 8 tập 1


Giải bài 20 trang 29 sách bài tập toán 8. Cộng các phân thức: 1/(x-y).(y-x) + 1/ (y-z)(z-x)...

Lựa chọn câu để xem lời giải nhanh hơn

Cộng các phân thức: 

LG a

\(\dfrac{1}{{\left( {x - y} \right)\left( {y - z} \right)}}\) + \(\dfrac{1 }{ {\left( {y - z} \right)\left( {z - x} \right)}}\) + \(\dfrac{1}{ {\left( {z - x} \right)\left( {x - y} \right)}}\) 

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) 

Lời giải chi tiết:

\(\displaystyle{1 \over {\left( {x - y} \right)\left( {y - z} \right)}} + {1 \over {\left( {y - z} \right)\left( {z - x} \right)}}\) + \(\displaystyle {1 \over {\left( {z - x} \right)\left( {x - y} \right)}}\) 

 \(\displaystyle = {{z - x} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}} \)\(\displaystyle + {{x - y} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}}\)\(\displaystyle + {{y - z} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}}\)\(\displaystyle  = {{z - x + x - y + y - z} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}} = 0 \)

LG b

\(\dfrac{4}{{\left( {y - x} \right)\left( {z - x} \right)}} + \dfrac{3}{{\left( {y - x} \right)\left( {y - z} \right)}}\) + \(\dfrac{3 }{{\left( {y - z} \right)\left( {x - z} \right)}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) 

Lời giải chi tiết:

\(\displaystyle{4 \over {\left( {y - x} \right)\left( {z - x} \right)}}\)\(\displaystyle + {3 \over {\left( {y - x} \right)\left( {y - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - z} \right)\left( {x - z} \right)}}\)

\(\displaystyle = {{ - 4} \over {\left( {y - x} \right)\left( {x - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - x} \right)\left( {y - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - z} \right)\left( {x - z} \right)}}\)

\(\displaystyle = {{ - 4\left( {y - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {{3\left( {x - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {{3\left( {y - x} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)

\(\displaystyle= {{ - 4y + 4z + 3x - 3z + 3y - 3x} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle = {{z - y} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\) 

\(\displaystyle= {{ - \left( {y - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\) \(\displaystyle = {{ - 1} \over {\left( {x - z} \right)\left( {y - x} \right)}} = {1 \over {\left( {x - z} \right)\left( {x - y} \right)}}\)

LG c

\(\dfrac{1}{ {x\left( {x - y} \right)\left( {x - z} \right)}} + \dfrac{1}{{y\left( {y - z} \right)\left( {y - x} \right)}}\) + \(\dfrac{1}{{z\left( {z - x} \right)\left( {z - y} \right)}}\)

Phương pháp giải:

Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

\( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) 

Lời giải chi tiết:

\(\displaystyle{1 \over {x\left( {x - y} \right)\left( {x - z} \right)}}\)\(\displaystyle + {1 \over {y\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {1 \over {z\left( {z - x} \right)\left( {z - y} \right)}}\)

\(\displaystyle = {1 \over {x\left( {x - y} \right)\left( {x - z} \right)}}\)\(\displaystyle +{-1 \over {y\left( {x - y} \right)\left( {y - z} \right)}}\)\(\displaystyle + {1 \over {z\left( {x - z} \right)\left( {y - z} \right)}}\)

\(\displaystyle = {{yz\left( {y - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle + {{ - xz\left( {x - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle + {{xy\left( {x - y} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)

\(\displaystyle = {{{y^2}z - y{z^2} - {x^2}z + x{z^2} + {x^2}y - x{y^2}} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)

\(\displaystyle = {{  (x{z^2}- y{z^2})  + ({x^2}y - x{y^2}}) - ({x^2}z-{y^2}z) \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)

\(\displaystyle = {{{z^2}\left( {x - y} \right) + xy\left( {x - y} \right) - z\left( {x - y} \right)\left( {x + y} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle  = {{\left( {x - y} \right)\left( {{z^2} + xy - xz - yz} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle = {{\left( {x - y} \right)\left[ {x\left( {y - z} \right) - z\left( {y - z} \right)} \right]} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle  = {{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}} = {1 \over {xyz}}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài