Bài 19 trang 8 SBT toán 9 tập 1


Giải bài 19 trang 8 sách bài tập toán 9. Rút gọn các phân thức...

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các phân thức:

LG a

\( \displaystyle{{{x^2} - 5} \over {x + \sqrt 5 }}\) (với \( x \ne  - \sqrt 5 \))

Phương pháp giải:

Áp dụng: 

\(A = {\left( {\sqrt A } \right)^2}\) (với \(A \ge 0\))

\({A^2} - {B^2} = (A - B)(A + B)\)

Lời giải chi tiết:

\( \displaystyle\eqalign{
& {{{x^2} - 5} \over {x + \sqrt 5 }} = {{{x^2} - {{\left( {\sqrt 5 } \right)}^2}} \over {x + \sqrt 5 }} \cr 
& = {{\left( {x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)} \over {x + \sqrt 5 }} = x - \sqrt 5 \cr} \)

(với \(x \ne  - \sqrt 5 \)). 

LG b

\( \displaystyle{{{x^2} + 2\sqrt 2 x + 2} \over {{x^2} - 2}}\) (với \(x \ne  \pm \sqrt 2 \) )

Phương pháp giải:

Áp dụng: 

\(A = {\left( {\sqrt A } \right)^2}\) (với \(A \ge 0\))

\({A^2} + 2AB + {B^2} = {(A + B)^2}\)

\({A^2} - {B^2} = (A - B)(A + B)\)

Lời giải chi tiết:

\( \displaystyle{{{x^2} + 2\sqrt 2 x + 2} \over {{x^2} - 2}}\)

\(\displaystyle = {{{x^2} + 2.x.\sqrt 2 + {{\left( {\sqrt 2 } \right)}^2}} \over {\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right)}} \)

\( = \dfrac{{{{\left( {x + \sqrt 2 } \right)}^2}}}{{\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)}}\)
\(\displaystyle = {{x + \sqrt 2 } \over {x - \sqrt 2 }}  \)

(với \(x \ne  \pm \sqrt 2 \) ). 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài