Bài 16 trang 7 SBT toán 9 tập 1


Giải bài 16 trang 7 sách bài tập toán 9. Biểu thức sau đây xác định với giá trị nào của x?.....(x - 1).(x - 3)....

Lựa chọn câu để xem lời giải nhanh hơn

Biểu thức sau đây xác định với giá trị nào của \(x\) ?

LG a

\( \displaystyle\sqrt {(x - 1)(x - 3)} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {A.B} \) có nghĩa khi \(A.B\ge 0\)

Ta xét các trường hợp sau:

TH1: 

\(\left\{ \begin{array}{l}
A \ge 0\\
B \ge 0
\end{array} \right.\)

TH2:

\(\left\{ \begin{array}{l}
A \le 0\\
B \le 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có:  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định khi và chỉ khi :

\( \displaystyle(x - 1)(x - 3) \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 1 \le 0 \hfill \cr 
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 1 \hfill \cr 
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le 1\)

Vậy với \(x ≤ 1\) hoặc \(x ≥ 3\) thì  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định.

LG b

\( \displaystyle\sqrt {{x^2} - 4} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {A} \) có nghĩa thì \({A}\ge 0 \)

Sử dụng: \(|A|\ge m\) (với \(m\ge 0\)) thì \(\left[ \matrix{
A\ge m \hfill \cr 
A \le - m \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:  \( \displaystyle\sqrt {{x^2} - 4} \) xác định khi và chỉ khi: 

\( \displaystyle\eqalign{
& {x^2} - 4 \ge 0 \Leftrightarrow {x^2} \ge 4 \cr 
& \Leftrightarrow \left| x \right| \ge 2 \Leftrightarrow \left[ \matrix{
x \ge 2 \hfill \cr 
x \le - 2 \hfill \cr} \right. \cr} \)

Vậy với \(x ≤ -2\) hoặc \(x ≥ 2\) thì  \( \displaystyle\sqrt {{x^2} - 4} \) xác định.

LG c

\( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {\dfrac{A}{B}} \) có nghĩa thì \( {\dfrac{A}{B}}\ge 0 \). Ta xét các trường hợp sau:

TH1:

\(\left\{ \begin{array}{l}
A \ge 0\\
B > 0
\end{array} \right.\)

TH2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định khi và chỉ khi: \( \displaystyle {{{x - 2} \over {x + 3}}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 2 \ge 0 \hfill \cr 
x + 3 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr 
x > - 3 \hfill \cr} \right. \Leftrightarrow x \ge 2\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 2 \le 0 \hfill \cr 
x + 3 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 2 \hfill \cr 
x < - 3 \hfill \cr} \right. \Leftrightarrow x < - 3\)

Vậy với \(x < -3\) hoặc \(x ≥ \)2 thì \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định.

LG 4

\( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} .\)

Phương pháp giải:

Để biểu thức \(\sqrt {\dfrac{A}{B}} \) có nghĩa thì \( {\dfrac{A}{B}}\ge 0 \). Ta xét các trường hợp sau:

TH1:

\(\left\{ \begin{array}{l}
A \ge 0\\
B > 0
\end{array} \right.\)

TH2: 

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định khi và chỉ khi \( \displaystyle{{2 + x} \over {5 - x}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\eqalign{
& \left\{ \matrix{
2 + x \ge 0 \hfill \cr 
5 - x > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x < 5 \hfill \cr} \right. \cr 
& \Leftrightarrow - 2 \le x < 5 \cr} \)

Trường hợp 2: 

\( \displaystyle\left\{ \matrix{
2 + x \le 0 \hfill \cr 
5 - x < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr 
x > 5 \hfill \cr} \right.\)

\( \displaystyle \Leftrightarrow \) vô nghiệm.

Vậy với \(-2 ≤ x < 5\) thì \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 14 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài