Bài 16 trang 7 SBT toán 9 tập 1


Giải bài 16 trang 7 sách bài tập toán 9. Biểu thức sau đây xác định với giá trị nào của x?.....(x - 1).(x - 3)....

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Biểu thức sau đây xác định với giá trị nào của \(x\) ?

LG a

\( \displaystyle\sqrt {(x - 1)(x - 3)} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {A.B} \) có nghĩa khi \(A.B\ge 0\)

Ta xét các trường hợp sau:

TH1: 

\(\left\{ \begin{array}{l}
A \ge 0\\
B \ge 0
\end{array} \right.\)

TH2:

\(\left\{ \begin{array}{l}
A \le 0\\
B \le 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có:  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định khi và chỉ khi :

\( \displaystyle(x - 1)(x - 3) \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 1 \le 0 \hfill \cr 
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 1 \hfill \cr 
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le 1\)

Vậy với \(x ≤ 1\) hoặc \(x ≥ 3\) thì  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định.

LG b

\( \displaystyle\sqrt {{x^2} - 4} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {A} \) có nghĩa thì \({A}\ge 0 \)

Sử dụng: \(|A|\ge m\) (với \(m\ge 0\)) thì \(\left[ \matrix{
A\ge m \hfill \cr 
A \le - m \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:  \( \displaystyle\sqrt {{x^2} - 4} \) xác định khi và chỉ khi: 

\( \displaystyle\eqalign{
& {x^2} - 4 \ge 0 \Leftrightarrow {x^2} \ge 4 \cr 
& \Leftrightarrow \left| x \right| \ge 2 \Leftrightarrow \left[ \matrix{
x \ge 2 \hfill \cr 
x \le - 2 \hfill \cr} \right. \cr} \)

Vậy với \(x ≤ -2\) hoặc \(x ≥ 2\) thì  \( \displaystyle\sqrt {{x^2} - 4} \) xác định.

LG c

\( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} ;\)

Phương pháp giải:

Để biểu thức \(\sqrt {\dfrac{A}{B}} \) có nghĩa thì \( {\dfrac{A}{B}}\ge 0 \). Ta xét các trường hợp sau:

TH1:

\(\left\{ \begin{array}{l}
A \ge 0\\
B > 0
\end{array} \right.\)

TH2:

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định khi và chỉ khi: \( \displaystyle {{{x - 2} \over {x + 3}}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 2 \ge 0 \hfill \cr 
x + 3 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr 
x > - 3 \hfill \cr} \right. \Leftrightarrow x \ge 2\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 2 \le 0 \hfill \cr 
x + 3 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 2 \hfill \cr 
x < - 3 \hfill \cr} \right. \Leftrightarrow x < - 3\)

Vậy với \(x < -3\) hoặc \(x ≥ \)2 thì \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định.

LG 4

\( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} .\)

Phương pháp giải:

Để biểu thức \(\sqrt {\dfrac{A}{B}} \) có nghĩa thì \( {\dfrac{A}{B}}\ge 0 \). Ta xét các trường hợp sau:

TH1:

\(\left\{ \begin{array}{l}
A \ge 0\\
B > 0
\end{array} \right.\)

TH2: 

\(\left\{ \begin{array}{l}
A \le 0\\
B < 0
\end{array} \right.\)

Lời giải chi tiết:

Ta có: \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định khi và chỉ khi \( \displaystyle{{2 + x} \over {5 - x}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\eqalign{
& \left\{ \matrix{
2 + x \ge 0 \hfill \cr 
5 - x > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x < 5 \hfill \cr} \right. \cr 
& \Leftrightarrow - 2 \le x < 5 \cr} \)

Trường hợp 2: 

\( \displaystyle\left\{ \matrix{
2 + x \le 0 \hfill \cr 
5 - x < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr 
x > 5 \hfill \cr} \right.\)

\( \displaystyle \Leftrightarrow \) vô nghiệm.

Vậy với \(-2 ≤ x < 5\) thì \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định.

Loigiaihay.com


Bình chọn:
4.6 trên 24 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí