Bài 17 trang 81 SBT toán 8 tập 1


Giải bài 17 trang 81 sách bài tập toán 8. Cho tam giác ABC . Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB và AC ở D và E...

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC.\) Các tia phân giác của các góc \(B\) và \(C\) cắt nhau ở \(I.\) Qua \(I\) kẻ đường thẳng song song với \(BC,\) cắt các cạnh \(AB\) và \(AC\) ở \(D\) và \(E.\)

LG a

Tìm các hình thang trong hình vẽ.

Phương pháp giải:

Sử dụng định nghĩa: Hình thang là tứ giác có hai cạnh đối song song.

Lời giải chi tiết:

Đường thẳng đi qua \(I\) song song với \(BC\) cắt \(AB\) tại \(D\) và \(AC\) tại \(E,\) ta có các hình thang sau: \(BDEC,\) \(BDIC,\) \(BIEC.\)

LG b

Chứng minh rằng hình thang \(BDEC\) có một cạnh đáy bằng tổng hai cạnh bên.

Phương pháp giải:

Sử dụng tính chất hai góc so le trong, tam giác cân.

Lời giải chi tiết:

\(\) \(DE // BC\) (theo cách vẽ)

\( \Rightarrow {\widehat I_1} = {\widehat B_1}\) (hai góc so le trong)

Mà \({\widehat B_1} = {\widehat B_2}\) (vì BI là phân giác góc B)

Suy ra: \({\widehat I_1} = {\widehat B_2}\)

Do đó: \(∆ BDI\) cân tại \(D\)

\(⇒ DI = DB   \;\;\; (1)\)

Ta có: \({\widehat I_2} = {\widehat C_1}\) (so le trong)

\({\widehat C_1} = {\widehat C_2}\) (vì CI là phân giác góc C)

Suy ra: \({\widehat I_2} = {\widehat C_2}\) do đó: \(∆ CEI\) cân tại \(E\)

\(⇒  IE = EC      \;\;\; \;\;\;  (2)\)

\(DE = DI + IE   \;\;\;  (3)\)

Từ \((1),\)\( (2)\) và \((3)\) suy ra: \(DE = BD + CE\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 17 phiếu

Các bài liên quan: - Bài 2. Hình thang

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài