Bài 1.1, 1.2 phần bài tập bổ sung trang 6 SBT toán 9 tập 2


Giải bài 1.1, 1.2 phần bài tập bổ sung trang 6 sách bài tập toán 9. Điểm nào sau đây thuộc đường thẳng 3x–2y = 3: A(1;3); B(2;3); C(3;3);D(4;3) ...

Lựa chọn câu để xem lời giải nhanh hơn

Bài 1.1

Điểm nào sau đây thuộc đường thẳng \(3x – 2y = 3:\)

\(A(1 ; 3);\)                 \( B(2 ; 3);\)

\(C(3 ; 3);\)                 \(D(4 ; 3)?\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

- Thay \(x=1;y=3\) vào phương trình \(3x – 2y = 3\) ta được: \(3.1-2.3=3\)

\(\Leftrightarrow -3=3\) (vô lí)

Do đó điểm \(A(1;3)\) không thuộc đường thẳng \(3x – 2y = 3.\)

- Thay \(x=2;y=3\) vào phương trình \(3x – 2y = 3\) ta được: \(3.2-2.3=3\)

\(\Leftrightarrow 0=3\) (vô lí)

Do đó điểm \(B(2;3)\) không thuộc đường thẳng \(3x – 2y = 3.\)

- Thay \(x=3;y=3\) vào phương trình \(3x – 2y = 3\) ta được: \(3.3-2.3=3\)

\(\Leftrightarrow 3=3\) (luôn đúng)

Do đó điểm \(C(3;3)\) thuộc đường thẳng \(3x – 2y = 3.\)

- Thay \(x=4;y=3\) vào phương trình \(3x – 2y = 3\) ta được: \(3.4-2.3=3\)

\(\Leftrightarrow 6=3\) (vô lí)

Do đó điểm \(D(4;3)\) không thuộc đường thẳng \(3x – 2y = 3.\)

 Vậy điểm \(C (3 ; 3)\) thuộc đường thẳng \(3x – 2y = 3.\)

Bài 1.2

Trong mỗi trường hợp sau, hãy xác định đường thẳng \(ax + by = c\) đi qua hai điểm \(M\) và \(N\) cho trước

\(a) M (0 ; -1), N (3 ; 0)\)

\(b) M (0 ; 3), N (-1 ; 0)\)

Phương pháp giải:

Sử dụng:

- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

\(a)\) Vì đường thẳng \(ax + by = c\) đi qua điểm \(M (0 ; -1)\) nên 

\(a.0+b.(-1)=c \Leftrightarrow b = -c\)

Vì đường thẳng \(ax + by = c\) đi qua điểm \(N (3 ; 0)\) nên 

\(a.3+b.0=c \Leftrightarrow 3a = c \Leftrightarrow a = \displaystyle{c \over 3}\)

Do đó đường thẳng phải tìm là \(\displaystyle{c \over 3}x - cy = c\). Vì đường thẳng \(MN\) được xác định nên \(a, b\) không đồng thời bằng \(0\), do đó \(c \ne 0\).

Khi đó:  \(\displaystyle{c \over 3}x - cy = c \Leftrightarrow \displaystyle{1 \over 3}x - y = 1 \\ \Leftrightarrow  x – 3y = 3\)

Vậy phương trình đường thẳng là: \(x – 3y = 3\)

\(b)\) Vì đường thẳng \(ax + by = c\) đi qua điểm \(M (0 ; 3)\) nên 

\(a.0+b.3=c \Leftrightarrow 3b = c \Leftrightarrow b = \displaystyle {c \over 3} \)

Vì đường thẳng \(ax + by = c\) đi qua điểm \(N (-1 ; 0)\) nên 

\(a.(-1)+b.0=c \Leftrightarrow a = -c \)

Do đó đường thẳng phải tìm là: \( - cx +\displaystyle {c \over 3}y = c\). Vì đường thẳng \(MN\) được xác định nên \(a, b\) không đồng thời bằng \(0\), do đó \(c \ne 0\).

Khi đó:  \( - cx +\displaystyle {c \over 3}y = c \Leftrightarrow -x + \displaystyle{1 \over 3}y= 1 \\ \Leftrightarrow  3x - y =- 3\)

Vậy phương trình đường thẳng là: \(3x - y = -3.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài