Bài 3 trang 5 SBT toán 9 tập 2


Giải bài 3 trang 5 sách bài tập toán 9. Trong mỗi trường hợp sau hãy tìm giá trị của m để: a) Điểm M(1;0) thuộc đường thẳng mx - 5y = 7; b) Điểm N(0;-3) thuộc đường thẳng 2,5x + my = -21 ...

Lựa chọn câu để xem lời giải nhanh hơn

Trong mỗi trường hợp sau hãy tìm giá trị của \(m\) để:

LG a

Điểm \(M\left( {1;0} \right)\) thuộc đường thẳng \(mx - 5y = 7\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(M\left( {1; 0} \right)\) thuộc đường thẳng \(mx - 5y = 7\) nên ta có:

\(m.1 - 5.0 = 7\)\( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(mx - 5y = 7\) đi qua điểm \(M\left( {1;0} \right)\)

LG b

Điểm \(N\left( {0; - 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(N\left( {0; - 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\) nên ta có: \(2,5.0 + m.\left( { - 3} \right) =  - 21\) \( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(2,5x + my = -21\) đi qua \(N\left( {0; - 3} \right)\)

LG c

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng  \(mx + 2y = -1\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(mx + 2y =  - 1\) nên  ta có: \(m.5 +2.\left( { - 3} \right) =  - 1\) \( \Leftrightarrow m = 1\)

Vậy với \(m = 1\) thì đường thẳng \(mx + 2y =  - 1\) đi qua điểm \(P\left( {5; - 3} \right)\)

LG d

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(3x – my = 6\).

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; - 3} \right)\) thuộc đường thẳng \(3x - my = 6\) nên ta có: \(3.5 - m.\left( { - 3} \right) = 6 \Leftrightarrow 3m =  - 9\) \( \Leftrightarrow m =  - 3\)

Vậy với \(m= - 3\) thì đường thẳng \(3x - my = 6\) đi qua điểm \(P\left( {5; - 3} \right)\)

LG e

Điểm \(Q\left( {0,5; - 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(Q\left( {0,5; - 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\) nên ta có: \(m.0,5 + 0.\left( { - 3} \right) = 17,5 \Leftrightarrow m = 35\)

Vậy với \(m = 35\) thì đường thẳng \(mx + 0y = 17,5\) đi qua điểm \(Q\left( {0,5; - 3} \right)\)

LG f

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\) nên ta có:  \(0.4 + m.0,3 = 1,5 \Leftrightarrow m = 5\)

Vậy với \(m = 5\) thì đường thẳng \(0x + my = 1,5\) đi qua điểm \(S\left( {4;0,3} \right)\)

LG g

Điểm \(A\left( {2; - 3} \right)\) thuộc đường thẳng \((m – 1)x + (m + 1)y = 2m + 1\)

Phương pháp giải:

Sử dụng:

- Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(A\left( {2; - 3} \right)\) thuộc đường thẳng \(\left( {m - 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) nên  ta có:

\(\eqalign{
& 2\left( {m - 1} \right) + \left( {m + 1} \right).\left( { - 3} \right) = 2m + 1 \cr 
& \Leftrightarrow 2m - 2 - 3m - 3 = 2m + 1 \cr 
& \Leftrightarrow 3m + 6 = 0 \cr 
& \Leftrightarrow m = - 2 \cr} \)

Vậy với \(m = -2\) thì đường thẳng \(\left( {m - 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) đi qua điểm \(A\left( {2; - 3} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài