Bài 7 trang 6 SBT toán 9 tập 2


Giải bài 7 trang 6 sách bài tập toán 9. Giải thích vì sao khi M(x0;y0) là giao điểm của hai đường thẳng ax + by = c và a'x+b'y=c' thì (x0;y0) là nghiệm chung của hai phương trình ấy.

Đề bài

Giải thích vì sao khi \(M\left( {{x_0};{y_0}} \right)\) là giao điểm của hai đường thẳng \(ax + by = c\) và \(a'x + b'y = c'\) thì \(\left( {{x_0};{y_0}} \right)\) là nghiệm chung của hai phương trình ấy.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Điểm \(M({x_0};{y_0})\) thuộc đường thẳng \(ax+by=c\)  \( \Leftrightarrow ax_0+by_0=c\).

Lời giải chi tiết

Điểm \(M\left( {{x_0};{y_0}} \right)\) là giao điểm của hai đường thẳng \(ax + by = c\)  và \(a'x + b'y = c'\) nên \(M\) thuộc cả hai đường thẳng trên.

Vì điểm \(M\) thuộc đường thẳng \(ax + by = c\) nên tọa độ của nó thỏa mãn phương trình đường thẳng này, ta có: \(a{x_0} + b{y_0} = c\)

Vì \(M\) thuộc đường thẳng \(a'x + b'y = c'\) nên tọa độ của nó thỏa mãn phương trình đường thẳng này, ta có: \(a'{x_0} + b'{y_0} = c'\)

Vậy \(\left( {{x_0};{y_0}} \right)\) là nghiệm chung của hai phương trình \(ax + by = c\) và \(a'x + b'y = c'\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài