Bài 10 trang 212 SBT đại số 10


Giải bài 10 trang 212 sách bài tập đại số 10. Giải các hệ phương trình sau...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau

LG a

\(\left\{ \begin{array}{l}x + y + xy = 5\\{x^2} + {y^2} + xy = 7;\end{array} \right.\)

Lời giải chi tiết:

\(\left\{ \begin{array}{l}x + y + xy = 5\\{x^2} + {y^2} + xy = 7\end{array} \right.\)

Cộng vế với vế hai phương trình ta được:

\({x^2} + {y^2} + x + y + 2xy = 12\) \( \Leftrightarrow {\left( {x + y} \right)^2} + \left( {x + y} \right) - 12 = 0\)

Đặt u = x + y ta được \({u^2} + u - 12 = 0\).

Giải ra ta được \({u_1} = 3,{u_2} =  - 4\)

Với u = 3 ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 3\\xy = 2\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 3 - x\\x\left( {3 - x} \right) = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = 3 - x\\{x^2} - 3x + 2 = 0\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}y = 3 - x\\\left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1,y = 2\\x = 2,y = 1\end{array} \right.\)

Với \(u =  - 4\) ta được hệ phương trình \(\left\{ \begin{array}{l}x + y =  - 4\\xy = 9\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y =  - 4 - x\\x\left( { - 4 - x} \right) = 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y =  - 4 - x\\{x^2} + 4x + 9 = 0\left( {VN} \right)\end{array} \right.\)

Đáp số: (1; 2) và (2; 1).

LG b

\(\left\{ \begin{array}{l}{x^2} + {y^2} - xy = 13\\x + y - \sqrt {xy}  = 3.\end{array} \right.\)

Lời giải chi tiết:

Hệ phương trình 

\( \Leftrightarrow \left\{ \begin{array}{l}
{\left( {x + y} \right)^2} - 3xy = 13\\
x + y - \sqrt {xy} = 3
\end{array} \right.\)

Đặt \(\left\{ \begin{array}{l}u = x + y\\v = \sqrt {xy} \end{array} \right.(v \ge 0)\) ta được hệ phương trình

\(\left\{ \begin{array}{l}{u^2} - 3{v^2} = 13\\u - v = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
v = u - 3\\
{u^2} - 3{\left( {u - 3} \right)^2} = 13
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
v = u - 3\\
- 2{u^2} + 18u - 40 = 0
\end{array} \right.\)

\(\Leftrightarrow  \left\{ \begin{array}{l} v =u- 3\\{u^2} - 9u + 20 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
v = u - 3\\
\left[ \begin{array}{l}
u = 5\\
u = 4
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
u = 5,v = 2\\
u = 4,v = 1
\end{array} \right.\)

TH1: \(u = 5,v = 2\) ta được:

\(\left\{ \begin{array}{l}x + y = 5\\\sqrt {xy}  = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x + y = 5\\xy = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\x\left( {5 - x} \right) = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\{x^2} - 5x + 4 = 0\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\\left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1,y = 4\\x = 4,y = 1\end{array} \right.\)

TH2: \(u = 4,v = 1\) ta được:

\(\left\{ \begin{array}{l}x + y = 4\\\sqrt {xy}  = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x + y = 4\\xy = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = 4 - x\\x\left( {4 - x} \right) = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = 4 - x\\{x^2} - 4x + 1 = 0\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}y = 4 - x\\\left[ \begin{array}{l}x = 2 - \sqrt 3 \\x = 2 + \sqrt 3 \end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 2 - \sqrt 3 ,y = 2 + \sqrt 3 \\x = 2 + \sqrt 3 ,y = 2 - \sqrt 3 \end{array} \right.\)

Đáp số: Hệ phương trình đã cho có bốn nghiệm là

\((4;1);(1;4);\) \((2 - \sqrt 3 ;2 + \sqrt 3 );(2 + \sqrt 3 ;2 - \sqrt 3 )\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - BÀI TẬP ÔN TẬP CUỐI NĂM

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài