Đề số 21 - Đề kiểm tra học kì 1 - Toán 9

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 21 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 9

Đề bài

Câu 1 (2,0 điểm):

Cho biểu thức: \(P = \left( {\dfrac{{2\sqrt x  + 1}}{{x + \sqrt x }} - \dfrac{{1 - \sqrt x }}{{\sqrt x }}} \right):\left( {1 + \dfrac{2}{{\sqrt x }}} \right)\) với \(x > 0\).

1. Rút gọn P.

2. Tính giá trị của P biết \(x = 2019 - 2\sqrt {2018} \)

Câu 2 (2,5 điểm):

Cho hàm số \(y = \left( {{m^2} - 2m + 3} \right)x - 4\,\,\,\,\,\left( d \right)\), (với m là tham số)

1. Chứng minh rằng với mọi m hàm số luôn đồng biến trên tập xác định của nó.

2. Tìm m để \(\left( d \right)\) đi qua \(A\left( {2;8} \right)\).

3. Tìm m để \(\left( d \right)\) song song với đường thẳng \(\left( {d'} \right):y = 3x + m - 4\).

Câu 3 (2,0 điểm):

Cho hệ phương trình \(\left\{ \begin{array}{l}mx + y = {x^2} + 3\\x - y =  - 4\end{array} \right.\)  (với m là tham số)

1. Giải hệ với \(m = 3\).

2. Chứng minh rằng với mọi \(m \ne  - 1\) hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\). Khi đó tìm giá trị nhỏ nhất của biểu thức \(Q = {x^2} - 2y + 10\).

Câu 4 (3,0 điểm) : Cho đường tròn tâm O, bán kính R và đường thẳng \(\left( \Delta  \right)\) không có điểm chung với đường tròn \(\left( O \right)\), H là hình chiếu vuông góc của O trên \(\left( \Delta  \right)\). Từ điểm M bất kỳ trên \(\left( \Delta  \right)\) (\(M \ne H\)), vẽ hai tiếp tuyến MA, MB tới đường tròn \(\left( O \right)\) (A, B là hai tiếp điểm). Gọi K, I thứ tự là giao điểm của AB với OMOH.

1. Chứng minh \(AB = 2AK\) và 5 điểm M, A, O, B, H cùng thuộc một đường tròn.

2. Chứng minh \(OI.OH = OK.OM = {R^2}\).

3. Trên đoạn OA lấy điểm N sao cho \(AN = 2ON\). Đường trung trực của BN cắt OME. Tính tỉ số \(\dfrac{{OE}}{{OM}}\).

Câu 5 (0,5 điểm) :

Giải phương trình: \(\sqrt {x + y - 4}  + \sqrt {x - y + 4}  + \sqrt { - x + y + 4}  = \sqrt x  + \sqrt y  + 2\)

Lời giải chi tiết

Câu 1:

Cho biểu thức: \(P = \left( {\dfrac{{2\sqrt x  + 1}}{{x + \sqrt x }} - \dfrac{{1 - \sqrt x }}{{\sqrt x }}} \right):\left( {1 + \dfrac{2}{{\sqrt x }}} \right)\) với \(x > 0\).

1. Rút gọn P.

\(\begin{array}{l}P = \left( {\dfrac{{2\sqrt x  + 1}}{{x + \sqrt x }} - \dfrac{{1 - \sqrt x }}{{\sqrt x }}} \right):\left( {1 + \dfrac{2}{{\sqrt x }}} \right)\\ = \dfrac{{2\sqrt x  + 1 - \left( {1 - \sqrt x } \right).\left( {\sqrt x  + 1} \right)}}{{\sqrt x .\left( {\sqrt x  + 1} \right)}}:\dfrac{{\sqrt x  + 2}}{{\sqrt x }}\\ = \dfrac{{2\sqrt x  + 1 - 1 + x}}{{\sqrt x .\left( {\sqrt x  + 1} \right)}}.\dfrac{{\sqrt x }}{{\sqrt x  + 2}} \\= \dfrac{{\sqrt x \left( {\sqrt x  + 2} \right)}}{{\sqrt x .\left( {\sqrt x  + 1} \right)}}.\dfrac{{\sqrt x }}{{\sqrt x  + 2}} = \dfrac{{\sqrt x }}{{\sqrt x  + 1}}\end{array}\)

2. Tính giá trị của P biết \(x = 2019 - 2\sqrt {2018} \)

\(x = 2019 - 2\sqrt {2018}  = 2018 - 2\sqrt {2018}  + 1 = {\left( {\sqrt {2018}  - 1} \right)^2}\)

\(\Rightarrow \sqrt x  = \left| {\sqrt {2018}  - 1} \right| = \sqrt {2018}  - 1\)

\( \Rightarrow P = \dfrac{{\sqrt x }}{{\sqrt x  + 1}} = \dfrac{{\sqrt {2018}  - 1}}{{\sqrt {2018}  - 1 + 1}} = \dfrac{{\sqrt {2018}  - 1}}{{\sqrt {2018} }} = 1 - \dfrac{1}{{\sqrt {2018} }}\)

Câu 2:

Cho hàm số \(y = \left( {{m^2} - 2m + 3} \right)x - 4\,\,\,\,\,\left( d \right)\), (với m là tham số)

1. Chứng minh rằng với mọi m hàm số luôn đồng biến trên tập xác định của nó.

\({m^2} - 2m + 3 = {m^2} - 2m + 1 + 2 = {\left( {m - 1} \right)^2} + 2 > 0\) với mọi m

Vậy với mọi m hàm số luôn đồng biến trên tập xác định của nó

2. Tìm m để \(\left( d \right)\) đi qua \(A\left( {2;8} \right)\).

Để \(\left( d \right)\) đi qua \(A\left( {2;8} \right)\) \( \Leftrightarrow \)\(8 = \left( {{m^2} - 2m + 3} \right).2 - 4 \Leftrightarrow 2{m^2} - 4m + 6 - 4 - 8 = 0\)

\( \Leftrightarrow 2{m^2} - 4m - 6 = 0 \)

\(\Leftrightarrow 2{m^2} + 2m - 6m - 6 = 0\)

\(\Leftrightarrow 2m\left( {m + 1} \right) - 6\left( {m + 1} \right) = 0\)

\(\Leftrightarrow \left( {m + 1} \right)\left( {2m - 6} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\2m - 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m =  - 1\\m = 3\end{array} \right.\)

Vậy với \(m =  - 1\) hoặc \(m = 3\) thì \(\left( d \right)\) đi qua \(A\left( {2;8} \right)\)

3. Tìm m để \(\left( d \right)\) song song với đường thẳng \(\left( {d'} \right):y = 3x + m - 4\).

Để \(\left( d \right)\) song song với đường thẳng \(\left( {d'} \right):y = 3x + m - 4\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 3 = 3\\ - 4 \ne m - 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m = 0\\m \ne 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}m\left( {m - 2} \right) = 0\\m \ne 0\end{array} \right. \Leftrightarrow m = 2\)

Vậy với \(m = 2\) thì \(\left( d \right)\) song song với đường thẳng \(\left( {d'} \right):y = 3x + m - 4\).

Câu 3:

Cho hệ phương trình \(\left\{ \begin{array}{l}mx + y = {m^2} + 3\\x - y =  - 4\end{array} \right.\)  (với m là tham số)

1. Giải hệ với \(m = 3\).

Với \(m = 3\) hệ phương trình thành:

\(\left\{ \begin{array}{l}3x + y = {3^2} + 3\\x - y =  - 4\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}3x + x + 4 = 12\\y = x + 4\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}4x = 8\\y = x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 6\end{array} \right.\)

Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {2;6} \right)\)  

2. Chứng minh rằng với mọi \(m \ne  - 1\) hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\). Khi đó tìm giá trị nhỏ nhất của biểu thức \(Q = {x^2} - 2y + 10\).

Với \(m \ne  - 1\) ta có:

\(\left\{ \begin{array}{l}mx + y = {m^2} + 3\\x - y =  - 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}mx + x + 4 = {m^2} + 3\\y = x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)x = {m^2} - 1\\y = x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = m - 1\\y = m + 3\end{array} \right.\)

Vậy với mọi \(m \ne  - 1\) hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right) = \left( {m - 1;m + 3} \right)\)

\(Q = {x^2} - 2y + 10 = {x^2} - 2\left( {x + 4} \right) + 10 \)\(\,= {x^2} - 2x + 2 = {\left( {x - 1} \right)^2} + 1 \ge 1\) với mọi x

Dấu ‘=’ xảy ra \( \Leftrightarrow x - 1 = 0 \Leftrightarrow x = 1 \Leftrightarrow m = 2\)

Vậy \({\min _Q} = 1\) đạt được khi \(m = 2\)  

Câu 4:

Cho đường tròn tâm O, bán kính R và đường thẳng \(\left( \Delta  \right)\) không có điểm chung với đường tròn \(\left( O \right)\), H là hình chiếu vuông góc của O trên \(\left( \Delta  \right)\). Từ điểm M bất kỳ trên \(\left( \Delta  \right)\) (\(M \ne H\)), vẽ hai tiếp tuyến MA, MB tới đường tròn \(\left( O \right)\) (A, B là hai tiếp điểm). Gọi K, I thứ tự là giao điểm của AB với OM và OH.

1. Chứng minh \(AB = 2AK\) và 5 điểm M, A, O, B, H cùng thuộc một đường tròn.

Có MA, MB là hai tiếp tuyến của đường tròn \(\left( O \right)\)

\( \Rightarrow \angle AMK = \angle BMK\) và \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau)

Xét \(\Delta AMK\) và \(\Delta BMK\) có: MK chung ; \(\angle AMK = \angle BMK\); \(MA = MB\) (cmt)

\( \Rightarrow \Delta AMK = \Delta BMK\)  (c.g.c) \( \Rightarrow AK = BK\) (2 cạnh tương ứng)

\( \Rightarrow AB = AK + BK = AK + AK = 2AK\)

Ta có: \(\angle OHM = \angle OAM = \angle OBM = {90^o}\) (\(OH \bot \left( \Delta  \right)\) và MA, MB là hai tiếp tuyến của đường tròn \(\left( O \right)\))

\( \Rightarrow \) H, A, B cùng thuộc đường tròn đường kính OM

\( \Rightarrow \) M, A, O, B, H cùng thuộc đường tròn đường kính OM

2. Chứng minh \(OI.OH = OK.OM = {R^2}\).

Có \(\Delta AMK = \Delta BMK\) (cmt) \( \Rightarrow \angle AKM = \angle BKM\) mà \(\angle AKM + \angle BKM = {180^o}\)

\( \Rightarrow \angle AKM = \angle BKM = {90^o} \Rightarrow AB \bot MN \Rightarrow \angle OKI = {90^o}\)

Xét \(\Delta OIK\) và \(\Delta OMH\) có: \(\angle O\) chung ; \(\angle OKI = \angle OHM = {90^o}\)

\(\Delta OIK \sim \Delta OMH\)   (g.g) \( \Rightarrow \dfrac{{OI}}{{OM}} = \dfrac{{OK}}{{OH}} \Rightarrow OI.OH = OK.OM\)

Xét \(\Delta BOM\) vuông tại B đường cao BK ta có: \(OK.OM = O{B^2} = {R^2}\)

\( \Rightarrow \)\(OI.OH = OK.OM = {R^2}\) (đpcm)

3. Trên đoạn OA lấy điểm N sao cho \(AN = 2ON\). Đường trung trực của BN cắt OM ở E. Tính tỉ số \(\dfrac{{OE}}{{OM}}\).

Ta có \(MA = MB\,\,;\,\,OA = OB\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow \) OM là đường trung trực của AB \( \Rightarrow EA = EB\) (\(E \in OM\))

Mặt khác \(EB = EN\) (E thuộc đường trung trực của BN) \( \Rightarrow EA = EN\)

\( \Rightarrow \Delta AEN\) cân tại E

Gọi là trung điểm của AN thì EF là đường trung tuyến đồng thời là đường cao của \(\Delta AEN\) cân tại E

\( \Rightarrow EF \bot OA\) mà \(OA \bot MA\) (tính chất tiếp tuyến)

\( \Rightarrow EF//MA\) (từ vuông góc đến song song)

Xét \(\Delta OAM\) có \(EF//MA\) nên theo định lý Ta-lét ta có: \(\dfrac{{OE}}{{OM}} = \dfrac{{OF}}{{OA}}\)

Vì \(AN = 2ON\) và F là trung điểm của AN nên \(AF = FN = ON \Rightarrow \dfrac{{OF}}{{OA}} = \dfrac{2}{3} \Rightarrow \dfrac{{OE}}{{OM}} = \dfrac{2}{3}\)

Câu 5:

Giải phương trình: \(\sqrt {x + y - 4}  + \sqrt {x - y + 4}  + \sqrt { - x + y + 4}  = \sqrt x  + \sqrt y  + 2\)

+) Với \(a \ge 0\,\,;\,\,b \ge 0\) ta có:

\({\left( {\sqrt a  - \sqrt b } \right)^2} \ge 0\)

\(\Leftrightarrow a - 2\sqrt {ab}  + b \ge 0 \Leftrightarrow a + b \ge 2\sqrt {ab} \)

\(\Leftrightarrow 2\left( {a + b} \right) \ge {\left( {\sqrt a  + \sqrt b } \right)^2}\)

\( \Leftrightarrow \sqrt a  + \sqrt b  \le \sqrt {2\left( {a + b} \right)} \)   (*)

Dấu ‘=’ xảy ra khi \(a = b\)

+) Điều kiện: \(x\,,y \ge 0\,\,;\,\,x + y - 4 \ge 0\,\,;\,\,x - y + 4 \ge 0\,\,;\,\, - x + y + 4 \ge 0\,\)

Áp dụng bất đẳng thức (*) ta được:

\(\sqrt {x + y - 4}  + \sqrt {x - y + 4}  \le \sqrt {2\left( {x + y - 4 + x - y + 4} \right)}  = 2\sqrt x \)    (1)

\(\sqrt {x + y - 4}  + \sqrt { - x + y + 4}  \le \sqrt {2\left( {x + y - 4 - x + y + 4} \right)}  = 2\sqrt y \)    (2)

\(\sqrt {x - y + 4}  + \sqrt { - x + y + 4}  \le \sqrt {2\left( {x - y + 4 - x + y + 4} \right)}  = 4\)    (3)

Từ (1), (2), (3) suy ra:

\(2\sqrt {x + y - 4}  + 2\sqrt {x - y + 4}  + 2\sqrt { - x + y + 4}  \le 2\sqrt x  + 2\sqrt y  + 4\)

\( \Rightarrow \sqrt {x + y - 4}  + \sqrt {x - y + 4}  + \sqrt { - x + y + 4}  \le \sqrt x  + \sqrt y  + 2\)

Dấu ‘=’ xảy ra khi: \(\left\{ \begin{array}{l}x + y - 4 = x - y + 4\\x + y - 4 =  - x + y + 4\\x - y + 4 =  - x + y + 4\end{array} \right. \Leftrightarrow x = y = 4\) (thỏa mãn điều kiện)

Vậy phương trình có nghiệm là \(x = y = 4\)

Xem thêm: Lời giải chi tiết Đề kiểm tra học kì 1 (Đề thi học kì 1) môn Toán 9 tại Tuyensinh247.com

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng