
Đề bài
Cho tam giác đều ABC nội tiếp đường tròn (O). Trên cung nhỏ AC lấy một điểm D. Trên dây cung BD lấy điểm M sao cho DM = DC.
a) Chứng minh MCD là tam giác đều.
b) Khi điểm D di động trên cung nhỏ AC (D có thể trùng điểm A hoặc điểm C), tập hợp các điểm M là gì?
Phương pháp giải - Xem chi tiết
a) Chứng minh tam giác MCD là tam giác cân có 1 góc bằng 600.
b) Chứng minh \(\widehat {BOC} = {120^0}\) không đổi.
Lời giải chi tiết
a) Ta có: \(\widehat {CDM} = \widehat {CAB} = {60^0}\) (2 góc nội tiếp cùng chắn cung BC).
Xét tam giác MCD có: \(\left\{ \begin{array}{l}MC = MD\,\,\left( {gt} \right)\\\widehat {CDM} = {60^0}\,\left( {cmt} \right)\end{array} \right. \Rightarrow \Delta MCD\) đều.
b) Do tam giác MCD đều (cmt) \( \Rightarrow \widehat {CMD} = {60^0}\).
Mà \(\widehat {CMD} + \widehat {BMC} = {180^0}\) (2 góc kề bù)
\( \Rightarrow \widehat {BMC} = {180^0} - \widehat {CMD}\)\(\; = {180^0} - {60^0} = {120^0}\).
B, C cố định, do đó M thuộc cung chứa góc 1200 dựng trên đoạn thẳng BC.
Giới hạn: Khi \(D \equiv B \Rightarrow M \equiv B;\,\,D \equiv C \Rightarrow M \equiv C\).
Vậy tập hợp các điểm M là cung chứa góc 1200 dựng trên đoạn thẳng BC cùng phía với điểm A.
Loigiaihay.com
Giải bài tập Cho tam giác ABC. Hãy trình bày cách xác định vị trí của điểm M trong tam giác ABC sao cho
Giải bài tập Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB
Giải bài tập Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác
Giải bài tập Cho đường tròn (O) đường kính AB. Lấy điểm M trên đoạn AO, vẽ dây CD vuông góc với AB
Giải bài tập Cho hình chữ nhật ABCD với AB
Giải bài tập Hãy tính diện tích hình vành khăn tạo bởi đường tròn ngoại tiếp và đường tròn nội tiếp tam giác đều ABC cạnh 12 cm.
Giải bài tập Từ một điểm M nằm ngoài đường tròn (O ; R) vẽ hai tiếp tuyến tiếp xúc với đường tròn A, B. Biết OM = 2R.
Giải bài tập Vẽ hai dây cung AB, AD của đường tròn (O ; R)
Giải bài tập Cho đường tròn (O) đường kính AB và cung AC có số đo nhỏ hơn 90o. Vẽ dây CD vuông góc
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: