Thử tài bạn trang 112 Tài liệu dạy – học Toán 7 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Điền vào chỗ trống để hoàn thành phần chứng minh định lí đảo.

Đề bài

Điền vào chỗ trống để hoàn thành phần chứng minh định lí đảo.

 

Chứng minh:

Xét hai trường hợp:

* \(D \in AB\) (hình 45a): Vì DA = DB (gt)

Nên D là………….của đoạn thẳng AB, do đó D thuộc…………của đoạn thẳng AB.

* \(D \notin AB\)(hình 45b): Kẻ đoạn thẳng nối D với trung điểm I của đoạn thẳng AB.

Ta có \(\Delta DAI = \Delta DBI\,\,\left( {c.c.c} \right)\)

Suy ra \(\widehat {{I_1}} = ...........\)

Mặt khác: \(\widehat {{I_1}} + \widehat {{I_2}} = {180^o}\,\,\left( {........} \right)\)

Nên ……………..=………….= 90o

Vậy………..là đường trung trực của đoạn thẳng AB.

Lời giải chi tiết

Chứng minh:

* \(D \in AB\) (hình 45a). Vì DA = DB (gt)

Nên D là trung điểm của đoạn thẳng AB, do đó D thuộc đường trung trực của đoạn thẳng AB.

* \(D \notin AB\) (hình 45b). Kẻ đoạn thẳng nối D với trung điểm của đoạn thẳng AB.

Ta có \(\Delta DAI = \Delta DBI\,\,\left( {c.c.c} \right)\) \( \Rightarrow {\widehat I_1} = {\widehat I_2}.\)

Mặt khác: \({\widehat I_1} + {\widehat I_2} = {180^o}\) (hai góc kề bù). Nên \({\widehat I_1} = {\widehat I_2} = 90^\circ .\)

Vậy DI là đường trung trực của đoạn thẳng AB.

Loigiaihay.com

Các bài liên quan: - 4. Tính chất đường trung trực của một đoạn thẳng