Luyện tập 6 trang 172 Tài liệu dạy – học Toán 8 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác đều ABC có cạnh là a. Chứng minh rằng tổng các khoảng cách từ một điếm M bên trong tam giác đến ba cạnh luôn bằng

Đề bài

Cho tam giác đều ABC có cạnh là a. Chứng minh rằng tổng các khoảng cách từ một điếm M bên trong tam giác đến ba cạnh luôn bằng \({{a\sqrt 3 } \over 2}\) .

Lời giải chi tiết

Kẻ đường cao AH của tam giác ABC.

\(\Delta ABC \Rightarrow \) AH là đường trung tuyến của tam giác ABC \( \Rightarrow H\) là trung điểm của BC

\( \Rightarrow BH = {{BC} \over 2} = {a \over 2}\)

Tam giác ABH vuông tại H \( \Rightarrow A{H^2} + B{H^2} = A{B^2}\) (định lí Pytago)

\( \Rightarrow A{H^2} + {{{a^2}} \over 4} = {a^2} \Rightarrow AH = {{a\sqrt 3 } \over 2}\)

Gọi m, n, p lần lượt là khoảng cách từ M đến AB, AC, BC

Ta có: \({S_{ABC}} = {S_{ABM}} + {S_{ACM}} + {S_{BCM}} = {1 \over 2}.m.a + {1 \over 2}.n.a + {1 \over 2}.p.a = {1 \over 2}a\left( {m + n + p} \right)\)

Mặt khác: \({S_{ABC}} = {1 \over 2}AH.BC = {1 \over 2}{{a\sqrt 3 } \over 2}.a\)

\( \Rightarrow {1 \over 2}.a.\left( {m + n + p} \right) = {1 \over 2}.{{a\sqrt 3 } \over 2}.a \Rightarrow m + n + p = {{a\sqrt 3 } \over 2}\)

Vậy ta có điều phải chứng minh.

Loigiaihay.com

Các bài liên quan: - Luyện tập - Chủ đề 4 : Diện tích đa giác

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu