Bài 9 trang 7 SBT toán 9 tập 2


Giải bài 9 trang 7 sách bài tập toán 9. Hãy biểu diễn y qua x ở mỗi phương trình (nếu có thể ) rồi đoán nhận số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao (không vẽ đồ thị): a) 4x-9y=3 và -5x-3y=1 ...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy biểu diễn \(y\) qua \(x\) ở mỗi phương trình (nếu có thể ) rồi đoán nhận số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao (không vẽ đồ thị):

LG a

\(\left\{ \matrix{

4x - {\rm{9y}} = 3 \hfill \cr 
- 5x - 3y = 1 \hfill \cr} \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right. \text {(nếu có thể)} \)  

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

\(\left\{ \matrix{
4x - {\rm{9}}y = 3 \hfill \cr 
- 5x - 3y = 1 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = \dfrac{4 }{9}x - \dfrac{1}{3} (d)\hfill \cr 
y = - \dfrac{5}{3}x - \dfrac{1}{ 3} (d') \hfill \cr} \right.\)

Ta có \(a = \dfrac{4 }{9}\), \(a' =- \dfrac{5}{3} \) nên \(a ≠ a'\).

Do đó \((d)\),\((d')\) cắt nhau.

Vậy hệ phương trình đã cho có nghiệm duy nhất.

LG b

\(\left\{ \matrix{
{2,3x + 0,8y = 5} \cr 
{2y = 6}\hfill \cr} \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right. \text {(nếu có thể)} \)  

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

\(\left\{ \matrix{
2,3x + 0,{\rm{8}}y = 5 \hfill \cr 
2y = {\rm{6}} \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = - \dfrac{23}{8}x + \dfrac{25} {4} \hfill \cr 
y = 3 \hfill \cr} \right.\)

Đường thẳng \(y =  \displaystyle - {{23} \over 8}x + {{25} \over 4}\) cắt hai trục tọa độ, đường thẳng \(y = 3\) song song với trục hoành nên hai đường thẳng trên cắt nhau.

Vậy hệ phương trình đã cho có nghiệm duy nhất.

LG c

\(\left\{ \matrix{
{3x = - 5} \cr 
{x + 5y = - 4}\hfill \cr} \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right. \text {(nếu có thể)} \)  

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

\(\left\{ \matrix{
3x = - 5 \hfill \cr 
x + 5y = - 4 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
x = - \dfrac{5}{3} \hfill \cr 
y = - \dfrac{1}{5}x - \dfrac{4}{5} \hfill \cr} \right.\)

Đường thẳng \(x =  \displaystyle - {5 \over 3}\) song song với trục tung, đường thẳng \(y = \displaystyle - {1 \over 5}x - {4 \over 5}\) cắt hai trục tọa độ nên hai đường thẳng đó cắt nhau.

Vậy hệ phương trình đã cho có nghiệm duy nhất.

LG d

\(\left\{ \matrix{
{3x - y = 1} \cr 
{6x - 2y = 5} \hfill \cr} \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi các hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right. \text {(nếu có thể)} \)  

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

\(\left\{ \matrix{
3x - y = 1 \hfill \cr 
{\rm{6}}x - 2y = 5 \hfill \cr} \right. \\ \Leftrightarrow \left\{ \matrix{
y = 3x - 1(d) \hfill \cr 
y = 3x - \dfrac{5}{2} (d')\hfill \cr} \right.\)

Ta có \(a = 3,b = -1\) và \(a' =3, b' =- \dfrac{5}{2} \) nên \(a = a', b ≠ b'\).

Do đó \((d)\),\((d')\) song song với nhau.

Vậy hệ phương trình đã cho vô nghiệm.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài