Bài 12 trang 8 SBT toán 9 tập 2


Giải bài 12 trang 8 sách bài tập toán 9. Minh họa hình học tập nghiệm của mỗi hệ phương trình sau: a)2x+3y=7 và x-y=6; b) 3x+2y=13 và 2x-y= -3; c)x+y=1 và 3x+0y=12; ...

Lựa chọn câu để xem lời giải nhanh hơn

Minh họa hình học tập nghiệm của mỗi hệ phương trình sau:

LG a

\(\left\{ {\matrix{
{2x + 3y = 7} \cr 
{x - y = 6} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

+) Vẽ hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\)  trong cùng một hệ trục tọa độ.

+) Xác định giao điểm của hai đường thẳng đã cho dựa vào hình vẽ.

+) Thử lại tọa độ giao điểm đó vào hệ phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết:

\( \left\{ {\matrix{
{2x + 3y = 7} \cr 
{x - y = 6} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle - {2 \over 3}x + {7 \over 3}} \cr 
{y = x - 6} \cr} } \right.\)

- Vẽ đường thẳng \(y =   \displaystyle - {2 \over 3}x + {7 \over 3}\):

Cho \(x = 0 \Rightarrow y =  \displaystyle {7 \over 3}\) ta được  \(A\left( {0; \displaystyle{7 \over 3}} \right)\)

Cho \(y = 0 \Rightarrow x = \displaystyle {7 \over 2}\) ta được \(B\left( {\displaystyle {7 \over 2};0} \right)\)

Đường thẳng \(y =   \displaystyle - {2 \over 3}x + {7 \over 3}\) là đường thẳng đi qua hai điểm \(A, \ B.\)

- Vẽ đường thẳng \(y = x – 6\):

Cho \(x = 0 \Rightarrow y =  - 6\) ta được \(C\left( {0; - 6} \right)\)

Cho \(y = 0 \Rightarrow x = 6\) ta được \(D\left( {6;0} \right)\)

Đường thẳng \(y = x – 6\) là đường thẳng đi qua hai điểm \(C, \ D.\)

 

- Quan sát hình vẽ, ta thấy hai đường thẳng \(y =   \displaystyle - {2 \over 3}x + {7 \over 3}\) và \(y = x – 6\) cắt nhau tại điểm \(M (5; -1).\)

Thay \(x = 5, y = -1\) vào hệ phương trình đã cho ta được:

\(\left\{ \begin{array}{l}2.5 +3.(-1) = 7\\5 - (-1) = 6\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}7 = 7\\ 6 =  6\end{array} \text{(luôn đúng)} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) = (5; -1)\).

LG b

\( \left\{ {\matrix{
{3x + 2y = 13} \cr 
{2x - y = - 3} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

+) Vẽ hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\)  trong cùng một hệ trục tọa độ.

+) Xác định giao điểm của hai đường thẳng đã cho dựa vào hình vẽ.

+) Thử lại tọa độ giao điểm đó vào hệ phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết:

\(\left\{ {\matrix{
{3x + 2y = 13} \cr 
{2x - y = - 3} \cr} } \right. \) 

\( \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle - {3 \over 2}x + {13 \over 2}} \cr 
{y = 2x + 3} \cr} } \right. \)

- Vẽ đường thẳng \(y = \displaystyle - {3 \over 2}x + {{13} \over 2}\):

Cho \(x = 0 \Rightarrow y = \displaystyle {{13} \over 2} \) ta được \(E(0;\displaystyle {{13} \over 2} )\)

Cho \(y = 0 \Rightarrow x =\displaystyle  {{13} \over 3}\) ta được \(F(\left( {\displaystyle {{13} \over 3};0} \right)\)

Đường thẳng \(y = \displaystyle - {3 \over 2}x + {{13} \over 2}\) là đường thẳng đi qua hai điểm \(E, \ F\)

- Vẽ đường thẳng \(y = 2x + 3\):

Cho \(x = 0 \Rightarrow y = 3\) ta được \(G (0; 3)\)

Cho \(y = 0 \Rightarrow x =  \displaystyle - {3 \over 2}\) ta được  \(H (\displaystyle - {3 \over 2}; 0)\)

Đường thẳng \(y = 2x + 3\) là đường thẳng đi qua hai điểm \(G, \ H.\)

- Quan sát hình vẽ, ta thấy hai đường thẳng \(y = \displaystyle - {3 \over 2}x + {{13} \over 2}\) và \(y = 2x + 3\) cắt nhau tại điểm \(N (1;5).\)

Thay \(x = 1, y = 5\) vào hệ phương trình đã cho ta được:

\(\left\{ \begin{array}{l}3.1+2.5 = 13\\2.1 - 5 = -3\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}13 = 13\\ -3 =  -3\end{array} \text{(luôn đúng)} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) = (1;5)\).

LG c

\( \left\{ {\matrix{
{x + y = 1} \cr 
{3x + 0y = 12} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

+) Vẽ hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\)  trong cùng một hệ trục tọa độ.

+) Xác định giao điểm của hai đường thẳng đã cho dựa vào hình vẽ.

+) Thử lại tọa độ giao điểm đó vào hệ phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết:

\(\left\{ {\matrix{
{x + y = 1} \cr 
{3x + 0y = 12} \cr} \Leftrightarrow \left\{ {\matrix{
{y = - x + 1} \cr 
{x = 4} \cr} } \right.} \right.\)

- Vẽ đường thẳng \(y = -x + 1\):

Cho \(x = 0 \Rightarrow y = 1\) ta được \(I  (0; 1)\)

Cho \(y = 0 \Rightarrow x = 1\) ta được \(J(1; 0)\)

Đường thẳng \(y = -x + 1\) là đường thẳng đi qua hai điểm \(I, \ J\).

- Vẽ đường thẳng \(x = 4\): 

Đường thẳng \(x=4\) đi qua điểm \(K(4;0)\) và song song với trục tung.

- Quan sát hình vẽ, ta thấy hai đường thẳng \(y = -x + 1\) và \(x = 4\) cắt nhau tại điểm \(L (4;-3).\)

Thay \(x = 4, y = -3\) vào hệ phương trình đã cho ta được:

\(\left\{ \begin{array}{l}4+(-3)=1\\3.4+0.(-3)=12\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}1= 1\\ 12 =  12\end{array} \text{(luôn đúng)} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) = (4;-3)\).

LG d

\(\left\{ {\matrix{
{x + 2y = 6} \cr 
{0x - 5y = 10} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Ta biến đổi hệ phương trình đã cho về dạng \(\left\{ \begin{array}{l}y = ax + b\\y = a'x + b'\end{array} \right.\)  

+) Vẽ hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\)  trong cùng một hệ trục tọa độ.

+) Xác định giao điểm của hai đường thẳng đã cho dựa vào hình vẽ.

+) Thử lại tọa độ giao điểm đó vào hệ phương trình ban đầu. Nếu thỏa mãn thì là nghiệm của hệ.

Lời giải chi tiết:

\(\left\{ {\matrix{
{x + 2y = 6} \cr 
{0x - 5y = 10} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle - {1 \over 2}x + 3} \cr 
{y = -2} \cr} } \right. \)

- Vẽ đường thẳng \(y = \displaystyle - {1 \over 2}x + 3\):

Cho \(x = 0 \Rightarrow y = 3\) ta được \(P(0; 3)\)

Cho \(y = 0 \Rightarrow x = 6\) ta được \(Q (6; 0)\)

Đường thẳng \(y = \displaystyle - {1 \over 2}x + 3\) là đường thẳng đi qua hai điểm \(P, \ Q\).

- Vẽ đường thẳng \(y = -2\):

Đường thẳng \(y = -2\) đi qua điểm \(R(0;-2)\) và song song với trục hoành.

- Quan sát hình vẽ, ta thấy hai đường thẳng \(y = \displaystyle - {1 \over 2}x + 3\) và \(y = -2\) cắt nhau tại điểm \(T (10;-2).\)

Thay \(x = 10, y = -2\) vào hệ phương trình đã cho ta được:

\(\left\{ \begin{array}{l}10+2.(-2)=6\\0.10-5.(-2)=10\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}6=6\\ 10 =  10\end{array} \text{(luôn đúng)} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) = (10;-2)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài