Bài 14 trang 8 SBT toán 9 tập 2


Giải bài 14 trang 8 sách bài tập toán 9. Vẽ hai đường thẳng(d_1):x + y = 2 và(d_2):2x + 3y = 0. Hỏi đường thẳng (d_3):3x + 2y = 10 có đi qua giao điểm của (d_1) và(d_2) hay không?

Đề bài

Vẽ hai đường thẳng \(\left( {{d_1}} \right):x + y = 2\) và \(\left( {{d_2}} \right):2x + 3y = 0\)

Hỏi đường thẳng \(\left( {{d_3}} \right):3x + 2y = 10\) có đi qua giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) hay không?

Phương pháp giải - Xem chi tiết

Sử dụng:

-  Vẽ đường thẳng có phương trình  \(ax+by=c,\ (a,b \ne 0)\):

Ta có \(ax+by=c \Leftrightarrow y=-\dfrac{a}{b}x+\dfrac{c}{b}\).

+) Cho \(x=0 \Rightarrow y=\dfrac{c}{b}\) ta được \(A{\left(0; \dfrac{c}{b}\right)}\)

+) Cho \(y=0 \Rightarrow x=\dfrac{c}{a} \) ta được \(B{\left( \dfrac{c}{a}; 0 \right)} \)

Đường thẳng đã cho là đường thẳng đi qua hai điểm \(A,\ B\).

- Hoành độ giao điểm của hai đường thẳng \(y=ax+b\) và \(y=a'x+b'\) là nghiệm của phương trình: \(ax+b=a'x+b'\).

Giải phương trình trên ta tìm được \(x\). Thay giá trị của \(x\) vào phương trình \(y=ax+b\) hoặc \(y=a'x+b'\), ta tìm được tung độ giao điểm.

-  Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).

Lời giải chi tiết

- Vẽ đường thẳng \(\left( {{d_1}} \right):x + y = 2\)

Ta có \(\left( {{d_1}} \right):x + y = 2 \Leftrightarrow y= -x+2\)

Cho \(x = 0 \Rightarrow y = 2\) ta được \(A(0; 2)\)

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B (2; 0)\)

Đường thẳng \(\left( {{d_1}} \right)\) là đường thẳng đi qua hai điểm \(A, \ B\).

- Vẽ đường thẳng \(\left( {{d_2}} \right):2x + 3y = 0\)

Ta có \(\left( {{d_2}} \right):2x + 3y = 0 \Leftrightarrow y = \displaystyle - {2 \over 3}x\)

Cho \(x = 0 \Rightarrow y =  0\) ta được \(O(0; 0)\)

Cho \(x = 3 \Rightarrow y =  - 2\) ta được \(C(3; -2)\)

Đường thẳng \(\left( {{d_2}} \right)\) là đường thẳng đi qua hai điểm \(O, \ C\).

- Hoành độ giao điểm \(M\) của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là nghiệm của phương trình:

\(-x+2= \displaystyle - {2 \over 3}x \Leftrightarrow \displaystyle  {1 \over 3}x = 2 \\ \Leftrightarrow x = 6\)

Suy ra tung độ giao điểm \(M\) là \( y = -6+2=-4\)

Vậy tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là \( M(6;-4).\)

Thay \(x=6;y=-4\) vào phương trình đường thẳng \(\left( {{d_3}} \right)\) ta được:

\(3.6 + 2.\left( { - 4} \right) =10  \Leftrightarrow 18 - 8 = 10 \\  \Leftrightarrow 10=10 \ \text{(luôn đúng)}.\)

Vậy đường thẳng \(\left( {{d_3}} \right):3x + 2y = 10\) đi qua giao điểm của  \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài