Bài 83* trang 171 SBT toán 9 tập 1


Giải bài 83* trang 171 sách bài tập toán 9. Cho hai đường tròn (O) và (O') cắt nhau tại A và B, OO' = 3cm. Qua A kẻ một đường thẳng cắt các đường tròn (O) và (O') theo thứ tự tại E và F ( A nằm giữa E và F). Tính xem đoạn thẳng EF có độ dài lớn nhất bằng bao nhiêu?

Đề bài

Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B,\) \(OO' = 3cm.\) Qua \(A\) kẻ một đường thẳng cắt các đường tròn \((O)\) và \((O')\) theo thứ tự tại \(E\) và \(F\) ( \(A\) nằm giữa \(E\) và \(F\)). Tính xem đoạn thẳng \(EF\) có độ dài lớn nhất bằng bao nhiêu\(?\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

+) Tứ giác có ba góc vuông là hình chữ nhật.

Lời giải chi tiết

Kẻ \(OI ⊥ AE, O'K ⊥ AF\)

Trong đường tròn \((O),\) có \(OI ⊥ AE\) mà OI là 1 phần đường kính và AE là dây cung nên: 

\( IA = IE = \displaystyle {1 \over 2}AE\) ( đường kính vuông góc với dây cung)

Trong đường tròn \((O'),\) có \(O'K ⊥ AF\) mà O'K là 1 phần đường kính và AF là dây cung nên: 

\(KA = KF = \displaystyle {1 \over 2}AF\) (đường kính vuông góc với dây cung)

Ta có: \( EF = AE + AF\)

Suy ra: \(EF = 2IA + 2AK \)\(= 2(IA + AK) = 2IK    \; \;(1)\)

Kẻ \(O'H ⊥ OI\)

Khi đó tứ giác \(IHO'K\) là hình chữ nhật ( có ba góc vuông)

Suy ra: \(O'H = IK\)

Trong tam giác \(OHO'\) ta có: \(O’H  \le {\rm{OO'}}=3\; (cm)\)

Suy ra: \(IK  \le {\rm{OO}}'\)      \((2)\)

Từ \((1)\) và \((2)\) suy ra: \(EF  \le {\rm{2OO'}}= 6 (cm)\)

Ta có: \(EF = 6cm\) khi \(H\) và \(O\) trùng nhau hay \(EF // OO'\)

Vậy \(EF\) có độ dài lớn nhất bằng \(6cm\) khi và chỉ khi \(EF // OO'.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương 2 - Đường tròn

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài