Bài 2.1 phần bài tập bỏ sung trang 173 SBT toán 9 tập 1


Giải bài 2.1 phần bài tập bỏ sung trang 173 sách bài tập toán 9. Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng:...

Đề bài

Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng:

\((A)\) \(\displaystyle {1 \over 3};\)                    \( (B)\)\(\displaystyle {1 \over 2};\)

\((C)\) \(\displaystyle {1 \over {\sqrt 2 }};\)                 \((D)\) \(2.\)

Hãy chọn phương án đúng.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong tam giác đều, giao ba đường trung tuyến cũng là giao ba đường phân giác, ba đường cao, đường trung trực (tâm đường tròn nội tiếp cũng là tâm đường tròn ngoại tiếp).

+) Trọng tâm tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\) độ dài đường trung tuyến ứng với đỉnh đó.

Lời giải chi tiết

Giả sử \(\Delta ABC\) đều ngoại tiếp đường tròn \((O,r)\), nội tiếp đường \((O,R)\)

Gọi \(H\) là trung điểm của \(BC\)

\(\Rightarrow r=OH,\; R=OA\)

Vì O là trọng tâm tam giác ABC (vì tam giác ABC đều)

\(\Rightarrow \dfrac{r}{R}=\dfrac{OH}{OA}=\dfrac{1}{2}\)

Chọn \((B).\)

Loigiaihay.com


Bình chọn:
4.2 trên 6 phiếu
  • Bài 2.2 phần bài tập bổ sung trang 173 SBT toán 9 tập 1

    Giải bài 2.2 phần bài tập bổ sung trang 173 sách bài tập toán 9. Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, vẽ các tia tiếp tuyến Ax và By với nửa đường tròn. Gọi M là điểm thuộc nửa đường tròn, D là giao điểm của AM và By, C là giao điểm của BM và Ax, E là trung điểm của BD. Chứng minh rằng:...

  • Bài 2.3 phần bài tập bổ sung trang 173 SBT toán 9 tập 1

    Giải bài 2.3 trang 173 phần bài tập bổ sung sách bài tập toán 9 Tập 1. Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB...

  • Bài 88 trang 172 SBT toán 9 tập 1

    Giải bài 88 trang 172 sách bài tập toán 9. Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường tròn (M ; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M ( C và D là các tiếp điểm khác H)...

  • Bài 87 trang 172 SBT toán 9 tập 1

    Giải bài 87 trang 172 sách bài tập toán 9. Cho hai đường tròn (O ; R) và (O' ; R') tiếp xúc ngoài tại A ( R > R')...

  • Bài 86 trang 172 SBT toán 9 tập 1

    Giải bài 86 trang 172 sách bài tập toán 9. Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O) có đường kính CB...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí