Bài 66 trang 17 SBT toán 8 tập 2


Giải bài 66 trang 17 sách bài tập toán 8. Giải các phương trình sau : ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

 \(\displaystyle\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\)

Phương pháp giải:

- Chuyển vế phải sang vế trái và phân tích vế trái thành nhân tử.

- Áp dụng phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\displaystyle\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\)

 \(\displaystyle  \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) - \left( {x + 2} \right){x^2} \) \(= 0  \)

\(\displaystyle\eqalign{  &  \Leftrightarrow \left( {x + 2} \right)\left[ {\left( {{x^2} - 3x + 5} \right) - {x^2}} \right] = 0  \cr  &  \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5 - {x^2}} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 2} \right)\left( {5 - 3x} \right) = 0 \cr} \)

  \(\displaystyle \Leftrightarrow x + 2 = 0\) hoặc \(\displaystyle5 - 3x = 0\)

+) Với \(\displaystyle x + 2 = 0 \Leftrightarrow x =  - 2.\)

+) Với \(\displaystyle 5 - 3x = 0 \Leftrightarrow 3x=5\Leftrightarrow x = {5 \over 3}.\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{-2; \,{5 \over 3}  \right \}.\)

LG b

\(\displaystyle{{ - 7{x^2} + 4} \over {{x^3} + 1}} = {5 \over {{x^2} - x + 1}} - {1 \over {x + 1}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{ - 7{x^2} + 4} \over {{x^3} + 1}} = {5 \over {{x^2} - x - 1}} - {1 \over {x + 1}}\)           ĐKXĐ: \(\displaystyle x \ne  - 1\)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle= {5 \over {{x^2} - x + 1}} - {1 \over {x + 1}}  \)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle = {{5\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle- {{{x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle= {{5x + 5} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle - {{{x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \)

\(\displaystyle  \Rightarrow  - 7{x^2} + 4 = 5x + 5 - {x^2} + x - 1  \)

\(\displaystyle  \Leftrightarrow  - 7{x^2} + {x^2} - 5x - x = 5 - 1 - 4  \)

\(\displaystyle  \Leftrightarrow  - 6{x^2} - 6x = 0  \)

\(\displaystyle  \Leftrightarrow  - 6({x^2} +x) = 0  \)

\(\displaystyle  \Leftrightarrow   {x^2} + x = 0  \)

\(\displaystyle  \Leftrightarrow x\left( {x + 1} \right) = 0 \)

\(\displaystyle \Leftrightarrow x = 0\) hoặc \(\displaystyle x + 1 = 0\)

\(\displaystyle \Leftrightarrow x = 0\) (thỏa mãn) hoặc \(\displaystyle x =  - 1\) (loại)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{  0\right \}.\)

LG c

\(\displaystyle2{x^2} - x = 3 - 6x\)

Phương pháp giải:

- Chuyển vế phải sang vế trái và phân tích vế trái thành nhân tử.

- Áp dụng phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\displaystyle\eqalign{  & 2{x^2} - x = 3 - 6x  \cr  &  \Leftrightarrow 2{x^2} - x + 6x - 3 = 0  \cr  &  \Leftrightarrow \left( {2{x^2} + 6x} \right) - \left( {x + 3} \right) = 0  \cr  &  \Leftrightarrow 2x\left( {x + 3} \right) - \left( {x + 3} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 3} \right)\left( {2x - 1} \right) = 0 \cr} \)

\(\displaystyle \Leftrightarrow 2x - 1 = 0\) hoặc \(\displaystyle x + 3 = 0\)

+) Với \(\displaystyle 2x - 1 = 0 \Leftrightarrow 2x=1 \Leftrightarrow x = {1 \over 2}\)

+) Với \(\displaystyle x + 3 = 0 \Leftrightarrow x =  - 3\) 

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ -3 ; {1 \over 2} \right \}.\)

LG d

\(\displaystyle{{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2\left( {x - 11} \right)} \over {{x^2} - 4}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2\left( {x - 11} \right)} \over {{x^2} - 4}}\)      ĐKXĐ: \(\displaystyle x \ne  \pm 2\)

\(\displaystyle   \Leftrightarrow {{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2x - 22} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}  \)

\(\displaystyle  \Leftrightarrow {{\left( {x - 2} \right)\left( {x - 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} - {{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} \)\(\displaystyle = {{2x - 22} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}  \)

\(\displaystyle  \Rightarrow \left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right) \)\(\displaystyle= 2x - 22  \)

\(\displaystyle \Leftrightarrow {x^2} - 2x - 2x + 4 - 3x - 6 \)\(\displaystyle = 2x - 22  \)

\(\displaystyle  \Leftrightarrow {x^2} - 2x - 2x - 3x - 2x + 4 - 6 \) \( + 22 = 0  \)

\(\displaystyle \Leftrightarrow {x^2} - 9x + 20 = 0  \)

\(\displaystyle  \Leftrightarrow {x^2} - 5x - 4x + 20 = 0  \)

\(\displaystyle  \Leftrightarrow x\left( {x - 5} \right) - 4\left( {x - 5} \right) = 0  \)

\(\displaystyle  \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0  \)

\(\displaystyle \Leftrightarrow x - 4 = 0\) hoặc \(\displaystyle x - 5 = 0\)

+) Với \(\displaystyle x - 4 = 0 \Leftrightarrow x = 4\) (thỏa mãn)

+) Với \(\displaystyle x - 5 = 0 \Leftrightarrow x = 5\) (thỏa mãn)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ 4; 5 \right \}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 17 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài