Bài 66 trang 17 SBT toán 8 tập 2


Giải bài 66 trang 17 sách bài tập toán 8. Giải các phương trình sau : ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

 \(\displaystyle\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\)

Phương pháp giải:

- Chuyển vế phải sang vế trái và phân tích vế trái thành nhân tử.

- Áp dụng phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\displaystyle\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\)

 \(\displaystyle  \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) - \left( {x + 2} \right){x^2} \) \(= 0  \)

\(\displaystyle\eqalign{  &  \Leftrightarrow \left( {x + 2} \right)\left[ {\left( {{x^2} - 3x + 5} \right) - {x^2}} \right] = 0  \cr  &  \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 3x + 5 - {x^2}} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 2} \right)\left( {5 - 3x} \right) = 0 \cr} \)

  \(\displaystyle \Leftrightarrow x + 2 = 0\) hoặc \(\displaystyle5 - 3x = 0\)

+) Với \(\displaystyle x + 2 = 0 \Leftrightarrow x =  - 2.\)

+) Với \(\displaystyle 5 - 3x = 0 \Leftrightarrow 3x=5\Leftrightarrow x = {5 \over 3}.\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{-2; \,{5 \over 3}  \right \}.\)

LG b

\(\displaystyle{{ - 7{x^2} + 4} \over {{x^3} + 1}} = {5 \over {{x^2} - x + 1}} - {1 \over {x + 1}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{ - 7{x^2} + 4} \over {{x^3} + 1}} = {5 \over {{x^2} - x - 1}} - {1 \over {x + 1}}\)           ĐKXĐ: \(\displaystyle x \ne  - 1\)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle= {5 \over {{x^2} - x + 1}} - {1 \over {x + 1}}  \)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle = {{5\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle- {{{x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \)

\(\displaystyle  \Leftrightarrow {{ - 7{x^2} + 4} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle= {{5x + 5} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \)\(\displaystyle - {{{x^2} - x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}  \)

\(\displaystyle  \Rightarrow  - 7{x^2} + 4 = 5x + 5 - {x^2} + x - 1  \)

\(\displaystyle  \Leftrightarrow  - 7{x^2} + {x^2} - 5x - x = 5 - 1 - 4  \)

\(\displaystyle  \Leftrightarrow  - 6{x^2} - 6x = 0  \)

\(\displaystyle  \Leftrightarrow  - 6({x^2} +x) = 0  \)

\(\displaystyle  \Leftrightarrow   {x^2} + x = 0  \)

\(\displaystyle  \Leftrightarrow x\left( {x + 1} \right) = 0 \)

\(\displaystyle \Leftrightarrow x = 0\) hoặc \(\displaystyle x + 1 = 0\)

\(\displaystyle \Leftrightarrow x = 0\) (thỏa mãn) hoặc \(\displaystyle x =  - 1\) (loại)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{  0\right \}.\)

LG c

\(\displaystyle2{x^2} - x = 3 - 6x\)

Phương pháp giải:

- Chuyển vế phải sang vế trái và phân tích vế trái thành nhân tử.

- Áp dụng phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

\(\displaystyle\eqalign{  & 2{x^2} - x = 3 - 6x  \cr  &  \Leftrightarrow 2{x^2} - x + 6x - 3 = 0  \cr  &  \Leftrightarrow \left( {2{x^2} + 6x} \right) - \left( {x + 3} \right) = 0  \cr  &  \Leftrightarrow 2x\left( {x + 3} \right) - \left( {x + 3} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 3} \right)\left( {2x - 1} \right) = 0 \cr} \)

\(\displaystyle \Leftrightarrow 2x - 1 = 0\) hoặc \(\displaystyle x + 3 = 0\)

+) Với \(\displaystyle 2x - 1 = 0 \Leftrightarrow 2x=1 \Leftrightarrow x = {1 \over 2}\)

+) Với \(\displaystyle x + 3 = 0 \Leftrightarrow x =  - 3\) 

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ -3 ; {1 \over 2} \right \}.\)

LG d

\(\displaystyle{{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2\left( {x - 11} \right)} \over {{x^2} - 4}}\)

Phương pháp giải:

Giải phương trình chứa ẩn ở mẫu

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết:

\(\displaystyle{{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2\left( {x - 11} \right)} \over {{x^2} - 4}}\)      ĐKXĐ: \(\displaystyle x \ne  \pm 2\)

\(\displaystyle   \Leftrightarrow {{x - 2} \over {x + 2}} - {3 \over {x - 2}} = {{2x - 22} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}  \)

\(\displaystyle  \Leftrightarrow {{\left( {x - 2} \right)\left( {x - 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} - {{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x - 2} \right)}} \)\(\displaystyle = {{2x - 22} \over {\left( {x + 2} \right)\left( {x - 2} \right)}}  \)

\(\displaystyle  \Rightarrow \left( {x - 2} \right)\left( {x - 2} \right) - 3\left( {x + 2} \right) \)\(\displaystyle= 2x - 22  \)

\(\displaystyle \Leftrightarrow {x^2} - 2x - 2x + 4 - 3x - 6 \)\(\displaystyle = 2x - 22  \)

\(\displaystyle  \Leftrightarrow {x^2} - 2x - 2x - 3x - 2x + 4 - 6 \) \( + 22 = 0  \)

\(\displaystyle \Leftrightarrow {x^2} - 9x + 20 = 0  \)

\(\displaystyle  \Leftrightarrow {x^2} - 5x - 4x + 20 = 0  \)

\(\displaystyle  \Leftrightarrow x\left( {x - 5} \right) - 4\left( {x - 5} \right) = 0  \)

\(\displaystyle  \Leftrightarrow \left( {x - 4} \right)\left( {x - 5} \right) = 0  \)

\(\displaystyle \Leftrightarrow x - 4 = 0\) hoặc \(\displaystyle x - 5 = 0\)

+) Với \(\displaystyle x - 4 = 0 \Leftrightarrow x = 4\) (thỏa mãn)

+) Với \(\displaystyle x - 5 = 0 \Leftrightarrow x = 5\) (thỏa mãn)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ 4; 5 \right \}.\)

Loigiaihay.com


Bình chọn:
4.5 trên 17 phiếu
  • Bài 67 trang 17 SBT toán 8 tập 2

    Giải bài 67 trang 17 sách bài tập toán 8. Số nhà của Khanh là một số tự nhiên có hai chữ số. Nếu thêm chữ số 5 vào bên trái số đó thì được một số kí hiệu là A. Nếu thêm chữ số 5 vào bên phải số đó thì được một số kí hiệu là B. Tìm số nhà của Khanh, biết rằng A – B = 153.

  • Bài 68 trang 17 SBT toán 8 tập 2

    Giải bài 68 trang 17 sách bài tập toán 8. Một đội thợ mỏ lập kế hoạch khai thác than, theo đó mỗi ngày phải khai thác được 50 tấn than. Khi thực hiện, mỗi ngày đội khai thác được 57 tấn than ...

  • Bài 69 trang 17 SBT toán 8 tập 2

    Giải bài 69 trang 17 sách bài tập toán 8. Hai xe ô tô cùng khởi hành từ Lạng Sơn về Hà Nội, quãng đường dài 163 km.Trong 43km đầu, hai xe có cùng vận tốc. Nhưng sau đó chiếc xe thứ nhất tăng vận tốc lên gấp 1,2 lần vận tốc ban đầu, trong khi chiếc xe thứ hai vẫn duy trì vận tốc cũ ...

  • Bài 70 trang 17 SBT toán 8 tập 2

    Giải bài 70 trang 17 sách bài tập toán 8. Một đoàn tàu hỏa từ Hà Nội đi Thành phố Hồ Chí Minh. 1 giờ 48 phút sau, một đoàn tàu hỏa khác khởi hành từ Nam Định cũng đi Thành phố Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của đoàn tàu thứ nhất là 5 km/h ...

  • Bài 71 trang 17 SBT toán 8 tập 2

    Giải bài 71 trang 17 sách bài tập toán 8. Lúc 7 giờ sáng, một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 36km, rồi ngay lập tức quay trở về và đến bến A lúc 11 giờ 30 phút. Tính vận tốc của ca nô khi xuôi dòng, biết rằng vận tốc nước chảy là 6 km/h.

  • Bài 3.1* phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.1* phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Giải các phương trình sau : ...

  • Bài 3.2* phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.2* phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cho ba số a, b và c đôi một phân biệt. Giải phương trình ...

  • Bài 3.3 phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.3 phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cần phải thêm vào tử và mẫu của phân số 13/18 với cùng một số tự nhiên nào để được phân số 4/5.

  • Bài 3.4 phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.4 phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cách đây 10 năm, tuổi của người thứ nhất gấp 3 lần tuổi của người thứ hai. Sau đây 2 năm, tuổi của người thứ hai bằng nửa tuổi của người thứ nhất. Hỏi hiện nay, tuổi của mỗi người là bao nhiêu ?

  • Bài 65 trang 16 SBT toán 8 tập 2

    Giải bài 65 trang 16 sách bài tập toán 8. Cho phương trình (ẩn x): 4x^2 - 25 + k^2 + 4kx = 0. a) Giải phương trình với k = 0; b) Giải phương trình với k = -3 ; ...

  • Bài 64 trang 16 SBT toán 8 tập 2

    Giải bài 64 trang 16 sách bài tập toán 8. Giải các phương trình sau : ...

  • Bài 63 trang 16 SBT toán 8 tập 2

    Giải bài 63 trang 16 sách bài tập toán 8. Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán) ...

  • Bài 62 trang 16 SBT toán 8 tập 2

    Giải bài 62 trang 16 sách bài tập toán 8. Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức ....

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.