Bài 3.2* phần bài tập bổ sung trang 18 SBT toán 8 tập 2


Giải bài 3.2* phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cho ba số a, b và c đôi một phân biệt. Giải phương trình ...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Cho ba số \(a, \;b\) và \(c\) đôi một phân biệt. Giải phương trình

\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} + {x \over {\left( {b - a} \right)\left( {b - c} \right)}} \)\(\displaystyle+ {x \over {\left( {c - a} \right)\left( {c - b} \right)}} = 2\)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

Do \(a,\, b,\, c\) đôi một khác nhau nên \(\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)\ne 0 \)

Ta có:

\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} + {x \over {\left( {b - a} \right)\left( {b - c} \right)}} \)\(\displaystyle + {x \over {\left( {c - a} \right)\left( {c - b} \right)}} = 2\)

\(\displaystyle   \Leftrightarrow {{x\left( {c - b} \right) + x\left( {a - c} \right) + x\left( {b - a} \right)} \over {\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \) \(= 2  \)

\(\begin{array}{l}
\Leftrightarrow \dfrac{{x\left( {c - b + a - c + b - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 2\\
\Leftrightarrow \dfrac{{x.0}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} = 2\\
\Leftrightarrow 0 = 2\,(vô\,lý)
\end{array}\)

Vậy phương trình đã cho vô nghiệm.

LG b

Cho số \(a\) và ba số \(b,\; c,\; d\) khác \(a\) và thỏa mãn điều kiện \(c + d = 2b\). Giải phương trình 

\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} - {{2x} \over {\left( {a - b} \right)\left( {a - d} \right)}} \)\(\displaystyle + {{3x} \over {\left( {a - c} \right)\left( {a - d} \right)}} \)\(\displaystyle = {{4a} \over {\left( {a - c} \right)\left( {a - d} \right)}}\)

Phương pháp giải:

Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :

+ Quy đồng mẫu hai vế phương trình và khử mẫu.

+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).

+ Tìm nghiệm của phương trình dạng \(ax+b=0\).

Lời giải chi tiết:

\(\displaystyle{x \over {\left( {a - b} \right)\left( {a - c} \right)}} - {{2x} \over {\left( {a - b} \right)\left( {a - d} \right)}} \)\(\displaystyle + {{3x} \over {\left( {a - c} \right)\left( {a - d} \right)}} \)\(\displaystyle = {{4a} \over {\left( {a - c} \right)\left( {a - d} \right)}}\)

\(\displaystyle  \Leftrightarrow {{x\left( {a - d} \right) - 2x\left( {a - c} \right) + 3x\left( {a - b} \right)} \over {\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}} \)\(\displaystyle = {{4a\left( {a - b} \right)} \over {\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}}  \)

\( \Leftrightarrow \dfrac{{x\left( {a - d - 2a + 2c + 3a - 3b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}} \)\(= \dfrac{{4a\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {a - d} \right)}}\)

\(\displaystyle  \Rightarrow x\left( {a - d - 2a + 2c + 3a - 3b} \right) \)\(\displaystyle = 4a\left( {a - b} \right)  \)

\(\displaystyle  \Leftrightarrow x\left( {2a - 3b + 2c - d} \right) = 4a\left( {a - b} \right)  \,(*)\)

Theo giả thiết, \(b + d = 2c\) nên \(b=2c-d\)

Do đó \(2a – 3b + 2c – d = 2a-3b+b\)\(= 2a-2b= 2 (a – b )\).

Từ đó phương trình (*) trở thành: 

\(\displaystyle 2\left( {a - b} \right)x = 4a\left( {a - b} \right)\)

\(\displaystyle \Leftrightarrow x = \dfrac {4a\left( {a - b} \right)}{2\left( {a - b} \right)}\) (vì \(a – b ≠ 0)\)

\(\Leftrightarrow x = 2a\).

Vậy phương trình đã cho có nghiệm duy nhất \(x =2a.\)

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu
  • Bài 3.3 phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.3 phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cần phải thêm vào tử và mẫu của phân số 13/18 với cùng một số tự nhiên nào để được phân số 4/5.

  • Bài 3.4 phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.4 phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Cách đây 10 năm, tuổi của người thứ nhất gấp 3 lần tuổi của người thứ hai. Sau đây 2 năm, tuổi của người thứ hai bằng nửa tuổi của người thứ nhất. Hỏi hiện nay, tuổi của mỗi người là bao nhiêu ?

  • Bài 3.1* phần bài tập bổ sung trang 18 SBT toán 8 tập 2

    Giải bài 3.1* phần bài tập bổ sung trang 18 sách bài tập toán 8 tập 2. Giải các phương trình sau : ...

  • Bài 71 trang 17 SBT toán 8 tập 2

    Giải bài 71 trang 17 sách bài tập toán 8. Lúc 7 giờ sáng, một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 36km, rồi ngay lập tức quay trở về và đến bến A lúc 11 giờ 30 phút. Tính vận tốc của ca nô khi xuôi dòng, biết rằng vận tốc nước chảy là 6 km/h.

  • Bài 70 trang 17 SBT toán 8 tập 2

    Giải bài 70 trang 17 sách bài tập toán 8. Một đoàn tàu hỏa từ Hà Nội đi Thành phố Hồ Chí Minh. 1 giờ 48 phút sau, một đoàn tàu hỏa khác khởi hành từ Nam Định cũng đi Thành phố Hồ Chí Minh với vận tốc nhỏ hơn vận tốc của đoàn tàu thứ nhất là 5 km/h ...

  • Bài 69 trang 17 SBT toán 8 tập 2

    Giải bài 69 trang 17 sách bài tập toán 8. Hai xe ô tô cùng khởi hành từ Lạng Sơn về Hà Nội, quãng đường dài 163 km.Trong 43km đầu, hai xe có cùng vận tốc. Nhưng sau đó chiếc xe thứ nhất tăng vận tốc lên gấp 1,2 lần vận tốc ban đầu, trong khi chiếc xe thứ hai vẫn duy trì vận tốc cũ ...

  • Bài 68 trang 17 SBT toán 8 tập 2

    Giải bài 68 trang 17 sách bài tập toán 8. Một đội thợ mỏ lập kế hoạch khai thác than, theo đó mỗi ngày phải khai thác được 50 tấn than. Khi thực hiện, mỗi ngày đội khai thác được 57 tấn than ...

  • Bài 67 trang 17 SBT toán 8 tập 2

    Giải bài 67 trang 17 sách bài tập toán 8. Số nhà của Khanh là một số tự nhiên có hai chữ số. Nếu thêm chữ số 5 vào bên trái số đó thì được một số kí hiệu là A. Nếu thêm chữ số 5 vào bên phải số đó thì được một số kí hiệu là B. Tìm số nhà của Khanh, biết rằng A – B = 153.

  • Bài 66 trang 17 SBT toán 8 tập 2

    Giải bài 66 trang 17 sách bài tập toán 8. Giải các phương trình sau : ...

  • Bài 65 trang 16 SBT toán 8 tập 2

    Giải bài 65 trang 16 sách bài tập toán 8. Cho phương trình (ẩn x): 4x^2 - 25 + k^2 + 4kx = 0. a) Giải phương trình với k = 0; b) Giải phương trình với k = -3 ; ...

  • Bài 64 trang 16 SBT toán 8 tập 2

    Giải bài 64 trang 16 sách bài tập toán 8. Giải các phương trình sau : ...

  • Bài 63 trang 16 SBT toán 8 tập 2

    Giải bài 63 trang 16 sách bài tập toán 8. Tính gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ hai (dùng máy tính bỏ túi để tính toán) ...

  • Bài 62 trang 16 SBT toán 8 tập 2

    Giải bài 62 trang 16 sách bài tập toán 8. Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức ....

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.