Bài 6.3 phần bài tập bổ sung trang 106 SBT toán 9 tập 2


Giải bài 6.3 phần bài tập bổ sung trang 106 sách bài tập toán 9. Cho tam giác ABC có ba góc nhọn. Xác định vị trí của điểm M trong tam giác sao cho MA + MB + MC nhỏ nhất.

Đề bài

Cho tam giác \(ABC\) có ba góc nhọn. Xác định vị trí của điểm \(M\) trong tam giác sao cho \(MA + MB + MC\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong tam giác đều, mỗi góc đều bằng \(60^\circ.\)

+) Chứng minh ba điểm thẳng hàng: Nếu \( \widehat{ABD}+\widehat{DBC}=180^\circ\) thì \(A,B,C\) thẳng hàng.

Lời giải chi tiết

Trong \(∆ABC\) ta lấy điểm \(M.\) Nối \(MA, MB, MC.\)

Ta cần làm xuất hiện tổng \(MA + MB + MC\) sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy \(MC\) làm cạnh dựng trên nửa mặt phẳng bờ \(BC\) chứa điểm \(A\) tam giác đều \(MCN.\) Suy ra: \(CM = MN.\)

Lấy \(AC\) làm cạnh dựng trên nửa mặt phẳng bờ \(AC\) không chứa điểm \(B\) tam giác đều \(APC.\)

Ta có:

\(\widehat {MCA} + \widehat {ACN} = \widehat {MCN}=60^\circ \)

\(\widehat {ACN} + \widehat {NCP} =\widehat {ACP}= 60^\circ \)

\( \Rightarrow \widehat {MCA} = \widehat {NCP}\) 

Xét \(∆AMC\) và \(∆PNC:\)

+) \(CM = CN\) (vì \(∆MCN\) đều)

+) \(\widehat {MCA} = \widehat {NCP}\) (chứng minh trên)

+) \( CA = CP\) (vì \(∆APC\) đều)

Suy ra: \(∆AMC = ∆PNC\;\; (c.g.c)\)

\( \Rightarrow         PN = AM\)

\( MA + MB + MC = NP + MB + MN\)

Ta có \(∆ABC\) cho trước nên điểm \(P\) cố định nên \(BM + MN + NP\) ngắn nhất khi \(4\) điểm \(B, M, N, P\) thẳng hàng.

Vì \(\widehat {CMN} = 60^\circ \) nên \(3\) điểm \(B, M, N\) thẳng hàng khi và chỉ khi \(\widehat {BMC} = 120^\circ \)

Vì \(\widehat {CNM} = 60^\circ \) nên \(3\) điểm \(M, N, P\) thẳng hàng khi và chỉ khi \(\widehat {CNP} = 120^\circ \)

Mà \(∆AMC = ∆PNC\) (chứng minh trên)     \( \Rightarrow \widehat {AMC} = \widehat {PNC} = 120^\circ \)

Vậy \(MA + MB + MC\) bé nhất khi và chỉ khi \(\widehat {BMC} = 120^\circ \)  và \(\widehat {AMC} = 120^\circ \)

Vậy \(M\) là giao điểm của \(2\) cung chứa góc \(120^\circ \) dựng trên \(BC\)  và \(AC.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 6. Cung chứa góc

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài