
Đề bài
Dựng tam giác \(ABC,\) biết \(BC = 3 cm,\) \(\widehat A = {45^o}\) và trung tuyến \(AM = 2,5 cm.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng cách vẽ cung chứa góc \(\alpha:\)
+) Vẽ đường trung trực \(d\) của đoạn thẳng \(AB.\)
+) Vẽ tia \(Ax\) tạo với \(AB\) góc \(\alpha.\)
+) Vẽ đường thẳng \(Ay\) vuông góc với \(Ax\). Gọi \(O\) là giao điểm của \(Ay\) với \(d.\)
+) Vẽ cung \(\overparen{AmB},\) tâm \(O,\) bán kính \(OA\) sao cho cung này nằm ở nửa mặt phẳng bờ \(AB\) không chứa tia \(Ax.\)
+) \(\overparen{AmB}\) được vẽ như trên là một cung chứa góc \(\alpha.\)
Lời giải chi tiết
Cách dựng:
− Dựng đoạn \(BC = 3cm.\)
− Dựng \(\widehat {CBx} = 45^\circ \)
− Dựng trung điểm \(M\) của \(BC.\)
− Dựng trung trực của \(BC\)
− Dựng tia vuông góc \(Bx\) tại \(B\) cắt đường trung trực của \(BC\) tại \(O.\)
− Dựng cung tròn \(\overparen{BmC}\) bán kính \(OB\) là cung chứa góc \(45^o\) vẽ trên \(BC.\)
− Dựng cung tròn tâm \(M\) bán kính \(2,5 cm\) cắt cung \(\overparen{BmC}\) tại \(A\) và \(A'.\)
− Nối \(AB, AC\) (hoặc \(A’B, A’C\)) ta có \(∆ABC\) (hoặc \(∆A’BC\)) thỏa mãn điều kiện bài toán.
(Chú ý:
Vì \(BC = 3 cm,\) nên \(MB=MC=BC:2=\dfrac{3}{2}\)
Ta có: \(\widehat {OBM} =90^0-45^0= 45^\circ \) nên tam giác OBM vuông cân tại M.
Nên \(MB=OM=\dfrac{3}{2}\)
Theo định lý Pytago ta có \(OB =\sqrt{MB^2+OM^2}= \displaystyle{{3\sqrt 2 } \over 2}\) \((cm).\)
Khoảng cách \(2\) tâm \(MO = \displaystyle{{3\sqrt 2 } \over 2}\) \((cm)\)
\(\displaystyle{{3\sqrt 2 } \over 2} - 2,5 < MO < {{3\sqrt 2 } \over 2} + 2,5\) nên \((O)\) và \((M)\) luôn cắt nhau. Bài toán luôn dựng được)
Chứng minh:
Ta có \(ΔABC\) (hoặc \(ΔA’BC)\) có \(BC = 3cm ,\) góc A \(= 45°\)(hoặc góc \(A' =45°)\) và trung tuyến \(AM =2,5cm\) (hoặc \(A'M=2,5cm)\) thỏa mãn đề bài.
Biện luận:
Bài toán có hai nghiệm hình.
Loigiaihay.com
Giải bài 36 trang 106 sách bài tập toán 9. Cho nửa đường tròn đường kính AB cố định. C là điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB...
Giải bài 37 trang 106 sách bài tập toán 9. Cho nửa đường tròn đường kính AB và C là một điểm trên nửa đường tròn. Trên bán kính OC lấy điểm D sao cho OD bằng khoảng cách CH từ C đến AB. Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho.
Giải bài 38 trang 106 sách bài tập toán 9. Dựng hình vuông ABCD, biết đỉnh A, điểm M thuộc cạnh BC và điểm N thuộc cạnh CD.
Giải bài 6.1 phần bài tập bổ sung trang 106 sách bài tập toán 9. Dựng một cung chứa góc 600 trên đoạn thẳng AB cho trước.
Giải bài 6.2 phần bài tập bổ sung trang 106 sách bài tập toán 9. Cho đường tròn tâm O bán kính R và điểm A (khác O) ở trong đường tròn đó.
Giải bài 6.3 phần bài tập bổ sung trang 106 sách bài tập toán 9. Cho tam giác ABC có ba góc nhọn. Xác định vị trí của điểm M trong tam giác sao cho MA + MB + MC nhỏ nhất.
Giải bài 34 trang 105 sách bài tập toán 9. Dựng cung chứa góc 42 độ trên đoạn thẳng AB = 3 cm.
Giải bài 33 trang 105 sách bài tập toán 9. Cho tam giác ABC có cạnh BC cố định và ...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: