
Đề bài
Trên đường tròn tâm \(O\) có một cung \(AB\) và \(S\) là điểm chính giữa của cung đó. Trên dây \(AB\) lấy hai điểm \(E\) và \(H.\) Các đường thẳng \(SH\) và \(SE\) cắt đường tròn theo thứ tự tại \(C\) và \(D.\) Chứng minh \(EHCD\) là một tứ giác nội tiếp.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.
+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)
+) Nếu một tứ giác có tổng số đo hai góc đối nhau bằng \(180^\circ\) thì tứ giác đó nội tiếp được đường tròn.
Lời giải chi tiết
\(S\) là điểm chính giữa của cung \(\overparen{AB}\).
\( \Rightarrow \) \(\overparen{SA} = \overparen{SB}\) \((1)\)
\(\widehat {DEB} = \displaystyle {1 \over 2}(sđ \overparen{DCB} + sđ \overparen{AS})\) (góc có đỉnh ở bên trong đường tròn) \( (2)\)
\(\widehat {DCS} = \displaystyle {1 \over 2} sđ \overparen{DAS}\) (tính chất góc nội tiếp) hay \(\widehat {DCS} =\displaystyle {1 \over 2} (sđ \overparen{DA} + sđ \overparen{SA}\)) \( (3)\)
Từ \((1)\) và \((2)\) suy ra: \(\widehat {DEB} + \widehat {DCS}\)\( =\displaystyle {1 \over 2} (sđ \overparen{DCB} + sđ \overparen{AS} + sđ \overparen{DA} + sđ \overparen{SA})\) \( (4)\)
Từ \((1)\) và \((4)\) suy ra: \(\widehat {DEB} + \widehat {DCS}\)\( =\displaystyle {1 \over 2} (sđ \overparen{DCB} + sđ \overparen{BS} + sđ \overparen{SA} + sđ \overparen{DA})\) \( = \displaystyle {{360^\circ } \over 2} = 180^\circ \)
Hay \(\widehat {DEH} + \widehat {DCH} = 180^\circ \)
Vậy: tứ giác \(EHCD\) nội tiếp được trong một đường tròn.
Loigiaihay.com
Giải bài 40 trang 106 sách bài tập toán 9. Cho tam giác ABC. Các đường phân giác trong của...
Giải bài 41 trang 106 sách bài tập toán 9. Cho tam giác cân ABC có đáy BC và...
Giải bài 42 trang 107 sách bài tập toán 9. Cho ba đường tròn cùng đi qua một điểm P...
Giải bài 43 trang 107 sách bài tập toán 9. Cho hai đoạn thẳng AC và BD cắt nhau tại E...
Giải bài 7.1 phần bài tập bổ sung trang 107 sách bài tập toán 9. Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy...
Giải bài 7.2 phần bài tập bổ sung trang 107 sách bài tập toán 9. Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: