Bài 42 trang 107 SBT toán 9 tập 2


Đề bài

Cho ba đường tròn cùng đi qua một điểm \(P.\) Gọi các giao điểm khác \(P\) của hai trong ba đường tròn đó là \(A, B, C.\) Từ một điểm \(D\) (khác điểm \(P\)) trên đường tròn \((PBC)\) kẻ các tia \(DB, DC\) cắt các đường tròn \((PAB)\) và \((PAC)\) lần lượt tại \(M, N.\) Chứng minh ba điểm \(M, A, N\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một tứ giác nội tiếp, tổng số đo hai góc đối nhau bằng \(180^\circ.\)

+) Chứng minh ba điểm thẳng hàng: Nếu \( \widehat{ABD}+\widehat{DBC}=180^\circ\) thì \(A,B,C\) thẳng hàng.

Lời giải chi tiết

Gọi ba đường tròn tâm \(O_1,O_2,O_3.\)

\((O_1)\) cắt \((O_2)\) tại \(A;\) \((O_1)\) cắt \((O_3)\) tại \(B.\) 

\((O_2)\) cắt \((O_3)\) tại \(C.\) Suy ra \(D\) là điểm nằm trên đường tròn \((O_3).\)

\(BD\) cắt \((O_1)\) tại \(M,\) \(DC\) cắt \((O_2)\) tại \(N.\)

Nối \(PA, PB, PC,\) \(MA, NA.\)

Ta có tứ giác \(APBM\)  nội  tiếp trong đường tròn \((O_1).\)

Nên \(\widehat {MAP} + \widehat {MBP} = 180^\circ \) (tính chất tứ giác nội tiếp)

Mà \(\widehat {MBP} + \widehat {PBD} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {MAP} = \widehat {PBD}\)  \(                             (1)\)

Ta có: Tứ giác \(APCN\) nội tiếp trong đường tròn \((O_2)\)

Nên \(\widehat {NAP} + \widehat {NCP} = 180^\circ \) (tính chất tứ giác nội tiếp)

Mà \(\widehat {NCP} + \widehat {PCD} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {NAP} = \widehat {PCD}\)  \(                             (2)\)

Tứ giác \(BPCD\) nội tiếp trong đường tròn \((O_3)\)

\( \Rightarrow \widehat {PBD} + \widehat {PCD} = 180^\circ \) (tính chất tứ giác nội tiếp) \((3)\)

Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {MAP} + \widehat {NAP} = 180^\circ \)

Vậy ba điểm \(M, A, N\) thẳng hàng.

Loigiaihay.com


Bình chọn:
4.3 trên 12 phiếu

Các bài liên quan: - Bài 7. Tứ giác nội tiếp

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài