Bài 51 trang 108 SBT toán 9 tập 2


Giải bài 51 trang 108 sách bài tập toán 9. Cho ngũ giác đều ABCDE. Gọi I là giao điểm của AD và BE...

Đề bài

Cho ngũ giác đều \(ABCDE.\) Gọi \(I\) là giao điểm của \(AD\) và \(BE.\) Chứng minh \(D{I^2} = AI.AD\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.

+) Số đo góc ở tâm chắn mỗi cạnh của đa giác đều \(n\) cạnh bằng \(\dfrac{360^\circ}{n}.\)

+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

Lời giải chi tiết

Vẽ đường tròn ngoại tiếp ngũ giác đều \(ABCDE\) 

\(sđ \overparen{AB} = sđ \overparen{BC} = sđ \overparen{CD}\)\(= sđ \overparen{DE} = sđ \overparen{AE}=\dfrac{360^\circ}{5}= 72^\circ\)\(\;\;                (1)\)

\(\widehat {{E_1}} = \displaystyle {1 \over 2} sđ \overparen{AB}\) (tính chất góc nội tiếp)   \(  (2)\)

\(\widehat {{D_1}} =  \displaystyle {1 \over 2} sđ \overparen{AE}\) (tính chất góc nội tiếp)   \(        (3)\)

Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {{E_1}} = \widehat {{D_1}}\)

Xét \(∆AIE\) và \(∆AED:\)

+) \(\widehat {{E_1}} = \widehat {{D_1}}\) (chứng minh trên)

+) \(\widehat A\) chung

Suy ra: \(∆AIE\) đồng dạng \(∆AED (g.g)\)

Do đó: \( \displaystyle {{AI} \over {AE}} = \displaystyle{{AE} \over {AD}}\)

\( \Rightarrow \) \(AE^2= AI. AD    \)\(\;\; (*)\)

Lại có: \(\widehat {{E_2}} = \displaystyle  {1 \over 2}sđ \overparen{BCD}\) (tính chất góc nội tiếp) hay \(\widehat {{E_2}} =  \displaystyle {1 \over 2} (sđ \overparen{BC} + sđ \overparen{CD}\)) \(\;\;           (4)\)

\(\widehat {{I_1}} =  \displaystyle {1 \over 2} (sđ \overparen{DE} + sđ \overparen{AB}\)) (tính chất góc có đỉnh ở trong đường tròn)  \(                               (5)\)

Từ \((1),\) \((4)\) và \((5)\) suy ra: \(\widehat {{E_2}} = \widehat {{I_1}}\)

\( \Rightarrow \) \(∆DEI\) cân tại \(D\) \( \Rightarrow DE = DI\)

          \(     DE = AE\;\; (gt)\)

Suy ra:\(DI = AE \;\;   (**)\)

Từ \((*)\) và \((**)\) suy ra:\( DI^2= AI. AD\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài