
Đề bài
\(a)\) Tính cạnh của một ngũ giác đều nội tiếp đường tròn bán kính \(3cm.\)
\(b)\) Tính cạnh của một ngũ giác đều ngoại tiếp đường tròn bán kính \(3cm.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác.
+) Đường tròn tiếp xúc với tất cả các cạnh của đa giác được gọi là đường tròn nội tiếp đa giác.
+) Số đo góc ở tâm chắn mỗi cạnh của đa giác đều \(n\) cạnh bằng \(\dfrac{360^\circ}{n}.\)
Lời giải chi tiết
\(a)\) Kẻ \(OH ⊥ AB,\) ta có: \(HA = HB = \displaystyle {1 \over 2}AB,OA = R = 3cm\)
Vì \(ABCDE\) là ngũ giác đều nên: \(\widehat {BOA} = \displaystyle{{360^\circ } \over 5} = 72^\circ \)
Suy ra \(\widehat {HOA} =\dfrac{\widehat{BOA}}{2}\)\(= \displaystyle{{72^\circ } \over 5} = 36^\circ \)
Trong tam giác vuông \(OHA\) vuông tại \(H\) ta có:
\(AH = OA.\sin \widehat {HOA}\)
\( \Rightarrow AB = 2.AH=2OA.\sin \widehat {HOA}\)\( = 2.3.\sin 36^\circ \approx 3,522\) \((cm)\)
\(b)\) Từ giả thiết suy ra \(OH = r = 3 cm\)
Trong tam giác vuông \(OHA\) vuông tại \(H\) ta có:
\(AH = OH.\tan \widehat {HOA}\) \( \Rightarrow AB =2.AH= 2.OH.\tan \widehat {HOA}\)\( = 2.3.\tan 36^\circ \approx 4,356\) \((cm)\)
Loigiaihay.com
Giải bài 49 trang 108 sách bài tập toán 9. Tính cạnh của hình tám cạnh đều theo bán kính R của đường tròn ngoại tiếp.
Giải bài 50 trang 108 sách bài tập toán 9. Tính các cạnh của tam giác ABC và đường cao AH của nó theo R.
Giải bài 51 trang 108 sách bài tập toán 9. Cho ngũ giác đều ABCDE. Gọi I là giao điểm của AD và BE...
Giải bài 8.1 phần bài tập bổ sung trang 109 sách bài tập toán 9. Mỗi câu sau đây đúng hay sai?...
Giải bài 8.2 phần bài tập bổ sung trang 109 sách bài tập toán 9. Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó...
Giải bài 47 trang 108 sách bài tập toán 9. a) Vẽ một lục giác đều ABCDEG nội tiếp đường tròn bán kính 2cm rồi vẽ hình 12 cạnh đều AIBJCKDLEMGN nội tiếp đường tròn đó. Nêu cách vẽ...
Giải bài 46 trang 107 sách bài tập toán 9. Cho một đa giác đều n cạnh có độ dài mỗi cạnh là a. Hãy tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp đa giác đều đó.
Giải bài 45 trang 107 sách bài tập toán 9. Vẽ đường tròn tâm O bán kính R = 2 cm rồi vẽ hình tám cạnh đều nội tiếp đường tròn (O; 2 cm). Nêu cách vẽ.
Giải bài 44 trang 107 sách bài tập toán 9. Vẽ hình vuông ABCD tâm O rồi vẽ tam giác đều có một đỉnh là A và nhận O làm tâm. Nêu cách vẽ.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: