
Đề bài
\(a)\) Vẽ một lục giác đều \(ABCDEG\) nội tiếp đường tròn bán kính \(2cm\) rồi vẽ hình \(12\) cạnh đều \(AIBJCKDLEMGN\) nội tiếp đường tròn đó. Nêu cách vẽ.
\(b)\) Tính độ dài cạnh \(AI.\)
\(c)\) Tính bán kính \(r\) của đường tròn nội tiếp hình \(AIBJCKDLEMGN.\)
Hướng dẫn. Áp dụng các công thức ở bài \(46.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác.
+) Đường tròn tiếp xúc với tất cả các cạnh của đa giác được gọi là đường tròn nội tiếp đa giác.
+) Số đo góc ở tâm chắn mỗi cạnh của đa giác đều \(n\) cạnh bằng \(\dfrac{360^\circ}{n}.\)
Lời giải chi tiết
\(a)\) Cách vẽ:
− Vẽ đường tròn \((0; 2cm)\)
− Từ điểm \(A\) trên đường tròn \((0; 2cm)\) đặt liên tiếp các cung bằng nhau có dây căng cung \(2cm.\)
\(\overparen{AB}\) \( =\overparen{BC}\) \( =\overparen{CD}\) \( =\overparen{DE}\) \( =\overparen{EG}\)
Nối \(AB, BC, CD, DE, EG, GA\) ta có lục giác đều \(ABCDEG\) nội tiếp trong đường tròn \((0; 2cm).\)
− Kẻ đường kính vuông góc với \(AB\) và \(DE\) cắt đường tròn tại \(I\) và \(L.\)
Ta có: \(\overparen{AI}= \overparen{IB};\) \(\overparen{LD} =\overparen{LE}\)
− Kẻ đường kính vuông góc với \(BC\) và \(EG\) cắt đường tròn tại \(J\) và \(M.\)
\(\overparen{BJ} = \overparen{JC}\); \(\overparen{ME} = \overparen{MG}\)
− Kẻ đường kính vuông góc với \(CD\) và \(AG\) cắt đường tròn tại \(N\) và \(K.\)
\(\overparen{KC}= \overparen{KD};\) \(\overparen{NA} = \overparen{NG}\)
Nối \(AI, IB, BJ, JC, CK, KD, DL,\) \(LE,\) \(EM,\) \(MG,\) \(GN,\) \(NA\)
Ta có đa giác đều \(12\) cạnh \(AIBJCKDLEMGN.\)
\(b)\) \(AI\) là cạnh của đa giác đều \(12\) cạnh.
Kẻ \(OH ⊥ AI\)
\(\widehat {IOH} = \displaystyle{{180^\circ } \over {12}} = 15^\circ \)
Xét tam giác vuông \(IOH\) có: \(OI = \displaystyle{{HI} \over {\sin \widehat {IOH}}} \)
\(\Rightarrow OI = \displaystyle{{AI} \over {2\sin \widehat {IOH}}}\)
\(\Rightarrow AI = OI.2\sin \widehat {IOH}\)
\(AI = 2. 2sin15^\circ \approx \)\( 1,04 (cm)\)
\(c)\) \(OH = r\) bán kính đường tròn nội tiếp đa giác đều \(12\) cạnh.
Trong tam giác vuông \(OHI\) ta có \(OH = OI.{\rm{cos}}\widehat {HOI} = 2.c{\rm{os15}}^\circ \approx {\rm{1,93 (cm) }}\)
Loigiaihay.com
Giải bài 48 trang 108 sách bài tập toán 9. a) Tính cạnh của một ngũ giác đều nội tiếp đường tròn bán kính 3cm...
Giải bài 49 trang 108 sách bài tập toán 9. Tính cạnh của hình tám cạnh đều theo bán kính R của đường tròn ngoại tiếp.
Giải bài 50 trang 108 sách bài tập toán 9. Tính các cạnh của tam giác ABC và đường cao AH của nó theo R.
Giải bài 51 trang 108 sách bài tập toán 9. Cho ngũ giác đều ABCDE. Gọi I là giao điểm của AD và BE...
Giải bài 8.1 phần bài tập bổ sung trang 109 sách bài tập toán 9. Mỗi câu sau đây đúng hay sai?...
Giải bài 8.2 phần bài tập bổ sung trang 109 sách bài tập toán 9. Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó...
Giải bài 46 trang 107 sách bài tập toán 9. Cho một đa giác đều n cạnh có độ dài mỗi cạnh là a. Hãy tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp đa giác đều đó.
Giải bài 45 trang 107 sách bài tập toán 9. Vẽ đường tròn tâm O bán kính R = 2 cm rồi vẽ hình tám cạnh đều nội tiếp đường tròn (O; 2 cm). Nêu cách vẽ.
Giải bài 44 trang 107 sách bài tập toán 9. Vẽ hình vuông ABCD tâm O rồi vẽ tam giác đều có một đỉnh là A và nhận O làm tâm. Nêu cách vẽ.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: