Bài 42 trang 84 SBT toán 8 tập 1


Đề bài

Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa, tính chất đường trung bình của tam giác:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Sử dụng tiên đề Ơ-clit: Qua một điểm nằm ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.

Lời giải chi tiết

Giả sử hình thang \(ABCD\) có \(AB // CD,\) \(AB < CD.\)

\(I, K\) lần lượt là trung điểm hai đường chéo \(BD, AC\)

Gọi \(F\) là trung điểm của \(BC\)

Trong tam giác \(ACB\) ta có:

\(K\) là trung điểm của cạnh \(AC\)

\(F\) là trung điểm của cạnh \(BC\)

Nên \(KF\) là đường trung bình của \(∆ ABC\)

\(⇒ KF // AB\) và \(KF = \displaystyle{1 \over 2}AB\) (tính chất đường trung bình của tam giác)

Trong tam giác \(BDC\) ta có:

\(I\) là trung điểm của cạnh \(BD\)

\(F\) là trung điểm của cạnh \(BC\)

Nên \(IF\) là đường trung bình của \(∆ BDC\)

\(⇒ IF // CD\) và \(IF = \displaystyle {1 \over 2}CD\) (tính chất đường trung bình của tam giác)

\(FK // AB\) mà \(AB // CD\) nên \(FK // CD\)

\(FI // CD\) (chứng minh trên)

Suy ra hai đường thẳng \(FI\) và \(FK\) trùng nhau.

\(⇒ I, K, F\) thẳng hàng

Lại có \(AB < CD\)\( ⇒\dfrac{AB}2<\dfrac{CD}2 ⇒ FK < FI\) nên \(K\) nằm giữa \(I\) và \(F\)

\(IF = IK + KF\)

\(\eqalign{
& \Rightarrow IK = IF - KF \cr 
& = \displaystyle{1 \over 2}CD - {1 \over 2}AB = {{CD - AB} \over 2} \cr} \)

Loigiaihay.com


Bình chọn:
4.3 trên 15 phiếu
  • Bài 43 trang 85 SBT toán 8 tập 1

    Giải bài 43 trang 85 sách bài tập toán 8. Hình thang ABCD có AB // CD, AB = a, BC = b, CD = c, DA = d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N.

  • Bài 44 trang 85 SBT toán 8 tập 1

    Giải bài 44 trang 85 sách bài tập toán 8. Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA’, BB’, CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng:...

  • Bài 4.1 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.1 phần bài tập bổ sung trang 85 sách bài tập toán 8. Trên hình bs.1, ta có AB // CD // EF // GH và AC = CE = EG. Biết CD = 9, GH = 13. Các độ dài AB và EF bằng:...

  • Bài 4.2 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.2 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d.

  • Bài 4.3 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.3 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Gọi K là giao điểm của DM và AC. Chứng minh rằng AK = 2KC.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.