Bài 36 trang 84 SBT toán 8 tập 1


Đề bài

Cho tứ giác \(ABCD.\) Gọi \(E, F, I\) theo thứ tự là trung điểm của \(AD,\) \(BC,\) \(AC.\) Chứng minh rằng:

\(a)\) \(EI// CD,\) \(IF // AB.\)

\(b)\) \(EF \le \displaystyle {{AB + CD} \over 2}\)

Phương pháp giải - Xem chi tiết

\(a)\) Sử dụng định nghĩa, tính chất đường trung bình của tam giác: 

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

\(b)\)  Sử dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

\(a)\) Trong tam giác \(ADC,\) ta có:

\(E\) là trung điểm của \(AD\;\; (gt)\)

\(I\) là trung điểm của \(AC\;\; (gt)\)

Nên \(EI\) là đường trung bình của \(∆ ADC\)

\(⇒ EI // CD\) (tính chất đường trung bình của tam giác) và \(EI =\displaystyle {{CD} \over 2}\)

Trong tam giác \(ABC\) ta có:

\(I\) là trung điểm của \(AC\)

\(F\) là trung điểm của \(BC\)

Nên \(IF\) là đường trung bình của \(∆ ABC\)

\(⇒ IF // AB\) (tính chất đường trung bình của tam giác) và \(IF = \displaystyle {{AB} \over 2}\)

\(b)\) Trong \(∆ EIF\) ta có: \(EF ≤ EI + IF\) (dấu \(“=”\) xảy ra khi \(E, I, F\) thẳng hàng)

Mà \(EI =\displaystyle  {{CD} \over 2}{\rm{;}}\,\,IF{\rm{ = }}{{AB} \over 2}\) (chứng minh trên)

\( \Rightarrow {\rm{EF}} \le\displaystyle  {{CD} \over 2} + {{AB} \over 2}\) 

Vậy \(EF \le \displaystyle {{AB + CD} \over 2}\) (dấu bằng xảy ra khi \(AB // CD\))

Loigiaihay.com


Bình chọn:
4.4 trên 33 phiếu
  • Bài 37 trang 84 SBT toán 8 tập 1

    Giải bài 37 trang 84 sách bài tập toán 8. Cho hình thang ABCD (AB // CD), M là trung điểm của AD, N là trung điểm của BC. Gọi I, K theo thứ tự là giao điểm của MN với BD, AC. Cho biết AB = 6cm, CD = 14 cm. Tính các độ dài MI, IK, KN.

  • Bài 38 trang 84 SBT toán 8 tập 1

    Giải bài 38 trang 84 sách bài tập toán 8. Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK.

  • Bài 39 trang 84 SBT toán 8 tập 1

    Giải bài 39 trang 84 sách bài tập toán 8. Cho tam giác ABC, đường trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD và AC...

  • Bài 40 trang 84 SBT toán 8 tập 1

    Giải bài 40 trang 84 sách bài tập toán 8. Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN.

  • Bài 41 trang 84 SBT toán 8 tập 1

    Giải bài 41 trang 84 sách bài tập toán 8. Chứng minh rằng đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm của hai đường chéo và đi qua trung điểm của cạnh bên thứ hai.

  • Bài 42 trang 84 SBT toán 8 tập 1

    Giải bài 42 trang 84 sách bài tập toán 8. Chứng minh rằng trong hình thang mà hai đáy không bằng nhau, đoạn thẳng nối trung điểm của hai đường chéo bằng nửa hiệu hai đáy.

  • Bài 43 trang 85 SBT toán 8 tập 1

    Giải bài 43 trang 85 sách bài tập toán 8. Hình thang ABCD có AB // CD, AB = a, BC = b, CD = c, DA = d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N.

  • Bài 44 trang 85 SBT toán 8 tập 1

    Giải bài 44 trang 85 sách bài tập toán 8. Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA’, BB’, CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng:...

  • Bài 4.1 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.1 phần bài tập bổ sung trang 85 sách bài tập toán 8. Trên hình bs.1, ta có AB // CD // EF // GH và AC = CE = EG. Biết CD = 9, GH = 13. Các độ dài AB và EF bằng:...

  • Bài 4.2 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.2 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d.

  • Bài 4.3 phần bài tập bổ sung trang 85 SBT toán 8 tập 1

    Giải bài 4.3 phần bài tập bổ sung trang 85 sách bài tập toán 8. Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Gọi K là giao điểm của DM và AC. Chứng minh rằng AK = 2KC.

  • Bài 35 trang 84 SBT toán 8 tập 1

    Giải bài 35 trang 84 sách bài tập toán 8. Hình thang ABCD có đáy AB, CD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh rằng ba điểm E, I, F thẳng hàng.

  • Bài 34 trang 84 SBT toán 8 tập 1

    Giải bài 34 trang 84 sách bài tập toán 8. Cho tam giác ABC, điểm D thuộc cạnh AC sao cho AD = 1/2 DC. Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.