Bài 3.1, 3.2 phần bài tập bổ sung trang 10 SBT toán 9 tập 2


Giải bài 3.1, 3.2 phần bài tập bổ sung trang 10 sách bài tập toán 9. Tìm a và b để hệ ax+by=17 và 3bx+ay=-29 có nghiệm là (x;y)=(1; -4) ...

Lựa chọn câu để xem lời giải nhanh hơn

Bài 3.1

Tìm \(a\) và \(b\) để hệ

\(\left\{ {\matrix{
{ax + by = 17} \cr 
{3bx + ay = - 29} \cr} } \right.\)

có nghiệm là \((x; y) = (1; -4)\)

Phương pháp giải:

Sử dụng:

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0}  = c'} \cr} } \right.\)

- Cách giải hệ phương trình bằng phương pháp thế (coi \(a, b\) là ẩn):

+ Bước 1: Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước 2: Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

Lời giải chi tiết:

Để \((x; y) = (1; -4)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 1;\)\( y = -4\) vào hệ phương trình ta có:

\(\eqalign{
& \left\{ {\matrix{
{a - 4b = 17} \cr 
{3b - 4a = - 29} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr 
{3b - 4\left( {4b + 17} \right) = - 29} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr 
{3b - 16b - 68 = - 29} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr 
{ - 13b = 39} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 4b + 17} \cr 
{b = - 3} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 5} \cr 
{b = - 3} \cr} } \right. \cr} \)

Vậy \(a = 5; b = -3.\)

Bài 3.2

Giải hệ phương trình:

\(\left\{ {\matrix{
{2x - y = 5} \cr 
{\left( {x + y + 2} \right)\left( {x + 2y - 5} \right) = 0} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Cách giải phương trình tích: 

\(A(x).B(x) = 0 \Leftrightarrow \left[ \begin{gathered}
A(x) = 0 \hfill \\
B(x) = 0 \hfill \\ 
\end{gathered} \right.\)

- Cách giải hệ phương trình bằng phương pháp thế :

+ Bước 1: Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước 2: Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

Lời giải chi tiết:

Ta có

\((x + y + 2)(x + 2y - 5) = 0 \\ \Leftrightarrow \left[ \begin{gathered}
x + y + 2 = 0 \hfill \\
x + 2y - 5 = 0 \hfill \\ 
\end{gathered} \right.\)

Khi đó ta có thể viết hệ đã cho thành hai hệ phương trình:

\(\left\{ {\matrix{
{2x - y = 5} \cr 
{x + y + 2 = 0} \cr} } \right.\)

hoặc

\(\left\{ {\matrix{
{2x - y = 5} \cr 
{x + 2y - 5 = 0} \cr} } \right.\)

Giải hệ:

\(\left\{ {\matrix{
{2x - y = 5} \cr 
{x + y + 2 = 0} \cr} } \right.\\  \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{x + 2x - 5 + 2 = 0} \cr} } \right.\)

\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{3x - 3 = 0} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{x = 1} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - 3} \cr 
{x = 1} \cr} } \right. \cr} \)

Giải hệ:

\(\left\{ {\matrix{
{2x - y = 5} \cr 
{x + 2y - 5 = 0} \cr} } \right. \\ \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{x + 2\left( {2x - 5} \right) - 5 = 0} \cr} } \right.\)

\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{5x - 15 = 0} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = 2x - 5} \cr 
{x = 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 1} \cr 
{x = 3} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có hai nghiệm:

\(\left( {{x_1};{y_1}} \right) = \left( {1; - 3} \right)\) ; \(\left( {{x_2};{y_2}} \right) = \left( {3;1} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3 trên 4 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài