Bài 21 trang 9 SBT toán 9 tập 2


Giải bài 21 trang 9 sách bài tập toán 9. Tìm giá trị của m: a) Để hai đường thẳng (d_1): 5x - 2y = 3,(d_2): x + y = m cắt nhau tại một điểm trên trục Oy ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị của m:

LG a

Để hai đường thẳng\(({d_1})\):\(5x - 2y = 3,\) \(({d_2})\):  \(x + y = m\) cắt nhau tại một điểm trên trục \(Oy\). Vẽ hai đường thẳng này trong cùng một mặt phẳng tọa độ.

Phương pháp giải:

Sử dụng:

- Hai đường thẳng cắt nhau tại một điểm \(A\) trên trục \(Oy\) thì \(A(0;y).\)

- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M({x_0};{y_0})\)  thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x+b'y = c'} \cr} } \right.\)

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0}  = c'} \cr} } \right.\)

Lời giải chi tiết:

Vì đường thẳng \(({d_1})\): \(5x - 2y = 3,\) 

\(({d_2})\): \(x + y = m\) cắt nhau tại một điểm trên trục \(Oy\) nên giao điểm \(A\) của \(({d_1})\) và \(({d_2})\) có hoành độ bằng \(0\), giả sử \(A(0; y).\)

Khi đó \(A(0; y)\) là nghiệm của hệ phương trình:\(\left\{ {\matrix{
{5x - 2y = 3} \cr 
{x + y = m} \cr} } \right.\)

Thay toạ độ điểm \(A\) vào hệ phương trình trên ta được:

\(\left\{ {\matrix{
{5.0 - 2y = 3} \cr 
{0 + y = m} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = \displaystyle - {3 \over 2}} \cr 
{m = \displaystyle  - {3 \over 2}} \cr} } \right.\) 

Vậy \(m =  \displaystyle  - {3 \over 2}\) thì \(({d_1})\) cắt \(({d_2})\) tại một điểm trên trục tung.

- Với \(m =  \displaystyle  - {3 \over 2}\) ta có \(({d_2})\): \(x + y = \displaystyle - {3 \over 2} \)\( \Leftrightarrow y = -x \displaystyle - {3 \over 2}\)

Cho \(x = 0 \Rightarrow y =  \displaystyle- {3 \over 2}\) ta được \(M \displaystyle  \left( {0; - {3 \over 2}} \right)\)

Cho \(y = 0 \Rightarrow x = \displaystyle  - {3 \over 2}\) ta được \(N \displaystyle\left( { - {3 \over 2};0} \right)\)

Đường thẳng \(({d_2})\) là đường thẳng đi qua hai điểm \(M, \ N\).

- Vẽ \(({d_1})\): \(5x - 2y = 3 \Leftrightarrow y = \displaystyle   {5\over 2}x - \displaystyle  {3 \over 2}\)

Cho \(x = 0 \Rightarrow y = \displaystyle  - {3 \over 2}\) ta được \(M\displaystyle \left( {0; - {3 \over 2}} \right)\)

Cho \(y = 0 \Rightarrow x = \displaystyle {3 \over 5}\) ta được \(P\displaystyle \left( {{3 \over 5};0} \right)\)

Đường thẳng \(({d_1})\) là đường thẳng đi qua hai điểm \(M, \ P\).

LG b

Để hai đường thẳng \(({d_1})\): \(mx + 3y = 10\), \(({d_2})\): \(x - 2y = 4\) cắt nhau tại một điểm trên trục \(Ox\). Vẽ hai đường thẳng này trong cùng  một mặt phẳng tọa độ.

Phương pháp giải:

Sử dụng:

- Hai đường thẳng cắt nhau tại một điểm \(A\) trên trục \(Oy\) thì \(A(0;y).\)

- Hai đường thẳng \(({d_1})\): \(ax + by = c\) và \(({d_2})\): \(a'x+b'y = c'\) cắt nhau tại điểm \(M({x_0};{y_0})\)  thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x+b'y = c'} \cr} } \right.\)

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right.\)

\( \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0}  = c'} \cr} } \right.\)

Lời giải chi tiết:

Vì đường thẳng \(({d_1})\): \(mx + 3y = 10\) và đường thẳng \(({d_2})\): \(x – 2y = 4\) cắt nhau tại một điểm trên trục hoành nên giao điểm \(B\) của \(({d_1})\) và \(({d_2})\) có tung độ bằng \(0\), giả sử \(B(x; 0)\)

Khi đó \(B(x; 0)\) là nghiệm của hệ phương trình:\(\left\{ {\matrix{
{mx + 3y = 10} \cr 
{x – 2y = 4} \cr} } \right.\)

Thay toạ độ điểm \(B\) vào hệ phương trình trên ta được:

\(\eqalign{
& \left\{ {\matrix{
{mx + 3.0 = 10} \cr 
{x - 2.0 = 4} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{mx = 10} \cr 
{x = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{m = \displaystyle {10 \over x}} \cr 
{x = 4} \cr} } \right.\cr 
& \Leftrightarrow \left\{ {\matrix{
{m = \displaystyle {5 \over 2}} \cr 
{x = 4} \cr} } \right. \cr} \) 

Vậy \(m = \displaystyle {5 \over 2}\) thì \(({d_1})\) cắt \(({d_2})\) tại một điểm trên trục hoành.

- Với \(m = \displaystyle {5 \over 2}\)  ta có \(({d_1})\): \(\displaystyle {5 \over 2}x + 3y = 10\)\(\Leftrightarrow y = \displaystyle - {5 \over 6}x+\displaystyle {10 \over 3}\)

Cho  \(x = 0 \Rightarrow y = \displaystyle {{10} \over 3}\) ta được \(C\displaystyle \left( {0;{{10} \over 3}} \right)\)

Cho \(y = 0 \Rightarrow x = 4\) ta được \(D\left( {4;0} \right)\)

Đường thẳng \(({d_1})\) là đường thẳng đi qua hai điểm \(C, \ D\).

- Vẽ \(\left( {{d_2}} \right):x - 2y = 4 \Leftrightarrow y= \displaystyle {1 \over 2}x-2\)

Cho \(x = 0 \Rightarrow y =  - 2\) ta được \(E\left( {0; - 2} \right)\)

Cho \(y = 0 \Rightarrow x = 4\) ta được \(D\left( {4;0} \right)\).

Đường thẳng \(({d_2})\) là đường thẳng đi qua hai điểm \(E,\ D\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài