Bài 18 trang 9 SBT toán 9 tập 2


Giải bài 18 trang 9 sách bài tập toán 9. Tìm giá trị của a và b: a)Để hệ phương trình 3ax-(b+1)y = 93 và bx + 4ay = - 3 có nghiệm là (x; y) = (1; -5); ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị của \(a\) và \(b\):

LG a

Để hệ phương trình

\(\left\{ {\matrix{
{3ax - \left( {b + 1} \right)y = 93} \cr 
{bx + 4ay = - 3} \cr} } \right.\)

có nghiệm là \((x; y) = (1; -5)\);

Phương pháp giải:

Sử dụng:

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0} = c'} \cr} } \right.  \)

- Cách giải hệ phương trình bằng phương pháp thế (coi \(a,b\) là ẩn)

+ Bước \(1\): Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

Lời giải chi tiết:

Để cặp \((x; y) = (1; -5)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 1; y = -5\) vào hệ phương trình ta được:

\(\begin{array}{l}
\left\{ \begin{array}{l}
3a.1 - \left( {b + 1} \right).\left( { - 5} \right) = 93\\
b.1 + 4a.\left( { - 5} \right) = - 3
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
3a + 5b + 5 = 93\\
b - 20a = - 3
\end{array} \right.
\end{array}\)

\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{3a + 5b = 88} \cr 
{b - 20a = - 3} \cr} } \right. \cr&\Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 5\left( {20a - 3} \right) = 88} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{3a + 100a - 15 = 88} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{103a = 103} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 20a - 3} \cr 
{a = 1} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 17} \cr 
{a = 1} \cr} } \right. \cr} \)

Vậy \(a = 1\) và \(b = 17.\)

LG b

Để hệ phương trình

\(\left\{ {\matrix{
{\left( {a - 2} \right)x + 5by = 25} \cr 
{2ax - \left( {b - 2} \right)y = 5} \cr} } \right.\)

có nghiệm là \((x; y) = (3; -1)\)

Phương pháp giải:

Sử dụng:

- Cặp số \(({x_0};{y_0})\) là nghiệm của hệ phương trình 

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x +b'y = c'} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{a{x_0} + b{y_0} = c} \cr 
{a'{x_0} +b'{y_0} = c'} \cr} } \right.  \)

- Cách giải hệ phương trình bằng phương pháp thế (coi \(a,b\) là ẩn)

+ Bước \(1\): Rút \(a\) hoặc \(b\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

Lời giải chi tiết:

Để cặp \((x; y) = (3; -1)\) là nghiệm của hệ phương trình đã cho, ta thay \(x = 3; y = -1\) vào hệ phương trình ta được:

\(\begin{array}{l}
\left\{ \begin{array}{l}
\left( {a - 2} \right).3 + 5b.\left( { - 1} \right) = 25\\
2a.3 - \left( {b - 2} \right).\left( { - 1} \right) = 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
3a - 6 - 5b = 25\\
6a + b - 2 = 5
\end{array} \right.
\end{array}\)

\(\eqalign{
& \Leftrightarrow \left\{ {\matrix{
{3a - 5b = 31} \cr 
{6a + b = 7} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{3a - 5\left( {7 - 6a} \right) = 31} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{33a = 66} \cr} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{b = 7 - 6a} \cr 
{a = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = - 5} \cr 
{a = 2} \cr} } \right. \cr} \)

Vậy  \(a = 2\) và  \(b = -5.\)

Loigiaihay.com


Bình chọn:
3.9 trên 11 phiếu
  • Bài 19 trang 9 SBT toán 9 tập 2

    Giải bài 19 trang 9 sách bài tập toán 9. Tìm giá trị của a và b để hai đường thẳng (d_1):(3a-1)x + 2by = 56 và (d_2): ax/2 - (3b + 2)y = 3 cắt nhau tại điểm M(2; -5).

  • Bài 20 trang 9 SBT toán 9 tập 2

    Giải bài 20 trang 9 sách bài tập toán 9. Tìm a và b: a) Để đường thẳng y = ax + b đi qua hai điểm A(-5;3),B(3/2;- 1); b) Để đường thẳng ax - 8y = b đi qua điểm M (9; -6) ...

  • Bài 21 trang 9 SBT toán 9 tập 2

    Giải bài 21 trang 9 sách bài tập toán 9. Tìm giá trị của m: a) Để hai đường thẳng (d_1): 5x - 2y = 3,(d_2): x + y = m cắt nhau tại một điểm trên trục Oy ...

  • Bài 22 trang 10 SBT toán 9 tập 2

    Giải bài 22 trang 10 sách bài tập toán 9. Tìm giao điểm của hai đường thẳng: a)(d_1):5x - 2y = c và (d_2):x + by = 2, biết rằng (d_1) đi qua điểm A(5;-1) và (d_2) đi qua điểm B(-7; 3); ...

  • Bài 23 trang 10 SBT toán 9 tập 2

    Giải bài 23 trang 10 sách bài tập toán 9. Giải các hệ phương trình: a)(x - 3)(2y + 5)=(2x + 7)(y -1) và (4x + 1)(3y - 6) = (6x - 1)(2y + 3) ...

  • Bài 24 trang 10 SBT toán 9 tập 2

    Giải bài 24 trang 10 sách bài tập toán 9. Giải các hệ phương trình sau bằng cách đặt ẩn số phụ: a) 1/x+ 1/y=4/5 và 1/x-1/y=1/5; b)15/x-7/y=9 và 4/x+9/y=35; ...

  • Bài 3.1, 3.2 phần bài tập bổ sung trang 10 SBT toán 9 tập 2

    Giải bài 3.1, 3.2 phần bài tập bổ sung trang 10 sách bài tập toán 9. Tìm a và b để hệ ax+by=17 và 3bx+ay=-29 có nghiệm là (x;y)=(1; -4) ...

  • Bài 17 trang 9 SBT toán 9 tập 2

    Giải bài 17 trang 9 sách bài tập toán 9. Giải các hệ phương trình:a)1,7x - 2y = 3,8 và 2,1x + 5y =0,4; ...

  • Bài 16 trang 9 SBT toán 9 tập 2

    Giải bài 16 trang 9 sách bài tập toán 9. Giải các hệ phương trình sau bằng phương pháp thế. a) 4x+5y=3 và x-3y=5; b)7x - 2y = 1 và 3x + y = 6 ...

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài