Bài 30 trang 11 SBT toán 9 tập 2


Giải bài 30 trang 11 sách bài tập toán 9. Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng ax+by=c và a'x+b'y=c;cách thứ hai: đặt ẩn phụ,

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng

\(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x + b'y = c'} \cr} } \right.\);

cách thứ hai: đặt ẩn phụ, chẳng hạn \(3x – 2 = s, 3y + 2 = t)\)

LG a

\(\left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr 
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Giải hệ phương trình bằng phương pháp cộng đại số

- Cách giải hệ phương trình bằng phương pháp đặt ẩn số phụ

+Bước 1: Đặt điều kiện để hệ có nghĩa (nếu cần)

+Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ

+Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp cộng đại số)

+Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ.

Lời giải chi tiết:

Cách \(1\):

\(\eqalign{
& \left\{ {\matrix{
{2\left( {3x - 2} \right) - 4 = 5\left( {3y + 2} \right)} \cr 
{4\left( {3x - 2} \right) + 7\left( {3y + 2} \right) = - 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 4 - 4 = 15y + 10} \cr 
{12x - 8 + 21y + 14 = - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr 
{12x + 21y = - 8} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{12x - 30y = 36} \cr 
{12x + 21y = - 8} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x - 15y = 18} \cr 
{51y = - 44} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{2x - 5y = 6} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2x  = 6+5y} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2x = 6 -  \displaystyle{{220} \over {51}}} \cr 
{y =  \displaystyle- {{44} \over {51}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2x =  \displaystyle{{86} \over {51}}} \cr 
{y =  \displaystyle- {{44} \over {51}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{43} \over {51}}} \cr 
{y = \displaystyle - {{44} \over {51}}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  \displaystyle \left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)

Cách \(2\):  Đặt \(3x – 2 = s, 3y + 2 = t\)

Khi đó hệ phương trình đã cho trở thành:

\(\eqalign{
& \left\{ {\matrix{
{2s - 4 = 5t} \cr 
{4s + 7t = - 2} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{2s - 5t = 4} \cr 
{4s + 7t = - 2} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{4s - 10t = 8} \cr 
{4s + 7t = - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{17t = - 10} \cr 
{2s - 5t = 4} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle  - {{10} \over {17}}} \cr 
{2s - 5t = 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle - {{10} \over {17}}} \cr 
{2s -  \displaystyle 5.\left( { - {{10} \over {17}}} \right) = 4} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = \displaystyle - {{10} \over {17}}} \cr 
{2s = 4 -  \displaystyle {{50} \over {17}}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t =  \displaystyle - {{10} \over {17}}} \cr 
{s =  \displaystyle {9 \over {17}}} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{3x - 2 =  \displaystyle{9 \over {17}}} \cr 
{3y + 2 =  \displaystyle- {{10} \over {17}}} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{3x = 2 +  \displaystyle{9 \over {17}}} \cr 
{3y = \displaystyle - {{10} \over {17}} - 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x =  \displaystyle{{43} \over {17}}} \cr 
{3y =  \displaystyle- {{44} \over {17}}} \cr
} } \right.\cr& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{43} \over {51}}} \cr 
{y =  \displaystyle - {{44} \over {51}}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  \displaystyle \left( {{{43} \over {51}}; - {{44} \over {51}}} \right)\)

LG b

\(\left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr 
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Giải hệ phương trình bằng phương pháp cộng đại số

- Cách giải hệ phương trình bằng phương pháp đặt ẩn số phụ

+Bước 1: Đặt điều kiện để hệ có nghĩa (nếu cần)

+Bước 2: Đặt ẩn phụ và điều kiện của ẩn phụ

+Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp cộng đại số)

+Bước 4: Trở lại ẩn ban đầu để tìm nghiệm của hệ.

Lời giải chi tiết:

Cách \(1\):

\(\eqalign{
& \left\{ {\matrix{
{3\left( {x + y} \right) + 5\left( {x - y} \right) = 12} \cr 
{ - 5\left( {x + y} \right) + 2\left( {x - y} \right) = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3x + 3y + 5x - 5y = 12} \cr 
{ - 5x - 5y + 2x - 2y = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{8x - 2y = 12} \cr 
{ - 3x - 7y = 11} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{4x - y = 6} \cr 
{3x + 7y = - 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{12x - 3y = 18} \cr 
{12x + 28y = - 44} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{31y = - 62} \cr 
{4x - y = 6} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{4x + 2 = 6} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{y = - 2} \cr 
{x = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  (1; -2).\)

Cách \(2\): Đặt \(x + y = s; x – y = t\)  

Khi đó hệ phương trình đã cho trở thành:

\(\eqalign{
& \left\{ {\matrix{
{3s + 5t = 12} \cr 
{ - 5s + 2t = 11} \cr
} } \right. \cr&\Leftrightarrow \left\{ {\matrix{
{15s + 25t = 60} \cr 
{ - 15s + 6t = 33} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{31t = 93} \cr 
{ - 5s + 2t = 11} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr 
{ - 5s + 2.3 = 11} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{t = 3} \cr 
{s = - 1} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{
& \left\{ {\matrix{
{x + y = - 1} \cr 
{x - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = 2} \cr 
{x - y = 3} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{1 - y = 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr 
{y = - 2} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \((x; y) =  (1; -2).\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài