Bài 26 trang 9 SBT toán 8 tập 1


Giải bài 26 trang 9 sách bài tập toán 8. Phân tích thành nhân tử:a) x^2-9;...

Lựa chọn câu để xem lời giải nhanh hơn

Phân tích thành nhân tử:

LG a

\(\) \({x^2} - 9\)

Phương pháp giải:

Sử dụng hằng đẳng thức:

\(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \({x^2} – 9= {x^2} - {3^2} = \left( {x + 3} \right)\left( {x - 3} \right)\)

LG b

\(\) \(4{x^2} - 25\)

Phương pháp giải:

Sử dụng hằng đẳng thức:

\(A^2-B^2=(A-B)(A+B)\)

Lời giải chi tiết:

\(\) \(4{x^2} – 25\) \( = {\left( {2x} \right)^2} - {5^2} = \left( {2x + 5} \right)\left( {2x - 5} \right)\)

LG c

\(\) \({x^6} - {y^6}\)

Phương pháp giải:

Sử dụng các hằng đẳng thức:

\({A^3} + {B^3} = \left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right)\)

\({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right)\)

Lời giải chi tiết:

\(\) \({x^6} - {y^6}\)\( = {\left( {{x^3}} \right)^2} - {\left( {{y^3}} \right)^2}\)\( = \left( {{x^3} + {y^3}} \right)\left( {{x^3} - {y^3}} \right)  \)\( = \left( {x + y} \right)\left( {{x^2} - xy + y} \right)\)\(\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 21 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài